Physical human-robot interaction with a mobile manipulator through pressure sensitive robot skin

Author(s):  
Joe Sanford ◽  
Isura Ranatunga ◽  
Dan Popa
2021 ◽  
Author(s):  
Danming Wei ◽  
Ruoshi Zhang ◽  
Mohammad Nasser Saadatzi ◽  
Olalekan O Olowo ◽  
Dan Popa

Author(s):  
Danming Wei ◽  
Ruoshi Zhang ◽  
Mohammad N. Saadatzi ◽  
Olalekan O. Olowo ◽  
Dan O. Popa

Abstract Pressure sensitive robotic skins have long been investigated for applications to physical human-robot interaction (pHRI). Numerous challenges related to fabrication, sensitivity, density, and reliability remain to be addressed under various environmental and use conditions. In our previous studies, we designed novel strain gauge sensor structures for robotic skin arrays. We coated these star-shaped designs with an organic polymer piezoresistive material, Poly (3, 4-ethylenedioxythiophene)-ploy(styrenesulfonate) or PEDOT: PSS and integrated sensor arrays into elastomer robotic skins. In this paper, we describe a dry etching photolithographic method to create a stable uniform sensor layer of PEDOT:PSS onto star-shaped sensors and a lamination process for creating double-sided robotic skins that can be used with temperature compensation. An integrated circuit and load testing apparatus was designed for testing the resulting robotic skin pressure performance. Experiments were conducted to measure the loading performance of the resulting sensor prototypes and results indicate that over 80% sensor yields are possible with this fabrication process.


Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 576 ◽  
Author(s):  
Gaoyang Pang ◽  
Jia Deng ◽  
Fangjinhua Wang ◽  
Junhui Zhang ◽  
Zhibo Pang ◽  
...  

For industrial manufacturing, industrial robots are required to work together with human counterparts on certain special occasions, where human workers share their skills with robots. Intuitive human–robot interaction brings increasing safety challenges, which can be properly addressed by using sensor-based active control technology. In this article, we designed and fabricated a three-dimensional flexible robot skin made by the piezoresistive nanocomposite based on the need for enhancement of the security performance of the collaborative robot. The robot skin endowed the YuMi robot with a tactile perception like human skin. The developed sensing unit in the robot skin showed the one-to-one correspondence between force input and resistance output (percentage change in impedance) in the range of 0–6.5 N. Furthermore, the calibration result indicated that the developed sensing unit is capable of offering a maximum force sensitivity (percentage change in impedance per Newton force) of 18.83% N−1 when loaded with an external force of 6.5 N. The fabricated sensing unit showed good reproducibility after loading with cyclic force (0–5.5 N) under a frequency of 0.65 Hz for 3500 cycles. In addition, to suppress the bypass crosstalk in robot skin, we designed a readout circuit for sampling tactile data. Moreover, experiments were conducted to estimate the contact/collision force between the object and the robot in a real-time manner. The experiment results showed that the implemented robot skin can provide an efficient approach for natural and secure human–robot interaction.


2017 ◽  
Vol 3 (1) ◽  
pp. 57-61
Author(s):  
Michael Pust ◽  
Ekaterina Ivanova ◽  
Henning Schmidt ◽  
Jörg Krüger

Abstract:Robot based therapy is one of the prevalent therapeutic approaches in motor stroke rehabilitation. It is often used in hospitals in combination with conventional therapy. In order to optimize human-robot interaction, we aim to investigate how a therapist physically supports patients during motor training of the upper extremities. This paper presents the design of a flexible textile sensor matrix, which measures the pressure exerted between therapist and patient during direct haptic interaction as well as the hand position and orientation in space. The matrix contains 144 sensors which enables measuring pressure intensity and localization of areas where the pressure is applied. The measurement matrix was evaluated with four healthy participants.


2021 ◽  
pp. 457-468
Author(s):  
Gbouna Vincent Zakka ◽  
Zeyang Hou ◽  
Gaoyang Pang ◽  
Huayong Yang ◽  
Geng Yang

Author(s):  
David A. Lopez ◽  
Jared A. Frank ◽  
Vikram Kapila

As mobile robots experience increased commercialization, development of intuitive interfaces for human-robot interaction gains paramount importance to promote pervasive adoption of such robots in society. Although smart devices may be useful to operate robots, prior research has not fully investigated the appropriateness of various interaction elements (e.g., touch, gestures, sensors, etc.) to render an effective human-robot interface. This paper provides overviews of a mobile manipulator and a tablet-based application to operate the mobile manipulator. In particular, a mobile manipulator is designed to navigate an obstacle course and to pick and place objects around the course, all under the control of a human operator who uses a tablet-based application. The tablet application provides the user live videos that are captured and streamed by a camera onboard the robot and an overhead camera. In addition, to remotely operate the mobile manipulator, the tablet application provides the user a menu of four interface element options, including, virtual buttons, virtual joysticks, touchscreen gesture, and tilting the device. To evaluate the intuitiveness of the four interface elements for operating the mobile manipulator, a user study is conducted in which participants’ performance is monitored as they operate the mobile manipulator using the designed interfaces. The analysis of the user study shows that the tablet-based application allows even non-experienced users to operate the mobile manipulator without the need for extensive training.


Author(s):  
Vincent Duchaine ◽  
Nicolas Lauzier ◽  
Mathieu Baril ◽  
Marc-Antoine Lacasse ◽  
Clement Gosselin

Sign in / Sign up

Export Citation Format

Share Document