Volume 1: 14th International Conference on Micro- and Nanosystems (MNS)
Latest Publications


TOTAL DOCUMENTS

19
(FIVE YEARS 19)

H-INDEX

0
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791883907

Author(s):  
Pouya Tavousi ◽  
Meysam T. Chorsi ◽  
Caitlyn Mundrane ◽  
Vitaliy Gorbatyuk ◽  
Kazem Kazerounian ◽  
...  

Abstract Natural nanomechanisms such as capillaries, neurotransmitters, and ion channels play a vital role in the living systems. But the design principles developed by nature through evolution are not well understood and, hence, not applicable to engineered nanomachines. Thus, the design of nanoscale mechanisms with prescribed functions remains a challenge. Here, we present a systematic approach based on established kinematics techniques to designing, analyzing, and controlling manufacturable nanomachines with prescribed mobility and function built from a finite but extendable number of available “molecular primitives.” Our framework allows the systematic exploration of the design space of irreducibly simple nanomachines, built with prescribed motion specification by combining available nanocomponents into systems having constrained, and consequently controllable motions. We show that the proposed framework has allowed us to discover and verify a molecule in the form of a seven link, seven revolute (7R) close loop spatial linkage with mobility (degree of freedom) of one. Furthermore, our experiments exhibit the type and range of motion predicted by our simulations. Enhancing such a structure into functional nanomechanisms by exploiting and controlling their motions individually or as part of an ensemble could galvanize development of the multitude of engineering, scientific, medical, and consumer applications that can benefit from engineered nanomachines.


Author(s):  
Danming Wei ◽  
Ruoshi Zhang ◽  
Mohammad N. Saadatzi ◽  
Olalekan O. Olowo ◽  
Dan O. Popa

Abstract Pressure sensitive robotic skins have long been investigated for applications to physical human-robot interaction (pHRI). Numerous challenges related to fabrication, sensitivity, density, and reliability remain to be addressed under various environmental and use conditions. In our previous studies, we designed novel strain gauge sensor structures for robotic skin arrays. We coated these star-shaped designs with an organic polymer piezoresistive material, Poly (3, 4-ethylenedioxythiophene)-ploy(styrenesulfonate) or PEDOT: PSS and integrated sensor arrays into elastomer robotic skins. In this paper, we describe a dry etching photolithographic method to create a stable uniform sensor layer of PEDOT:PSS onto star-shaped sensors and a lamination process for creating double-sided robotic skins that can be used with temperature compensation. An integrated circuit and load testing apparatus was designed for testing the resulting robotic skin pressure performance. Experiments were conducted to measure the loading performance of the resulting sensor prototypes and results indicate that over 80% sensor yields are possible with this fabrication process.


Author(s):  
Sherif A. Tella ◽  
Mohammad I. Younis

Abstract Due to the increasing demand for smarter solutions and embedded systems, MEMS resonator-based computing devices have been under considerable attention for their simplicity and prospect of low computational power. However, most complex logic functions require multi-input/output lines that are cascadable such that the outputs of one device can be used as inputs into subsequent devices for practical applications, and this is a current limitation for MEMS logic devices. In this study, we demonstrate multi-inputs/outputs half-adder function, AND, and XOR logic gates on the basis of activating and deactivating the localization and delocalization of the multi vibrational modes of a single MEMS resonator with improved energy efficiency.


Author(s):  
Julio Beatriz ◽  
Dumitru I. Caruntu

Abstract This paper investigates the frequency-amplitude response of electrostatically actuated Bio-MEMS clamped circular plates under superharmonic resonance of fourth order. The system consists of an elastic circular plate parallel to a ground plate. An AC voltage between the two plates will lead to vibrations of the elastic plate. Method of Multiple Scales, and Reduced Order Model with two modes of vibration are the two methods used in this work. The two methods show similar amplitude-frequency response, with an agreement in the low amplitudes. The difference between the two methods can be seen for larger amplitudes. The effects of voltage and damping on the amplitude-frequency response are reported. The steady-state amplitudes in the resonant zone increase with the increase of voltage and with the decrease of damping.


Author(s):  
Sterling Voss ◽  
Bret Mecham ◽  
Lucy Bowden ◽  
Jacquelyn Monroe ◽  
Anton E. Bowden ◽  
...  

Abstract Physically altering the micro-topography of a surface can dramatically affect its capacity to support or prevent biofilm growth. Growing carbon-infiltrated carbon nanotubes on biomedical materials is one such approach which has proven effective. Unfortunately, the high temperature and carbon-rich gas exposure required for this procedure has proven to have deleterious effects. This paper proposes a kinetic model to explain the rusting phenomenon observed on 316L stainless steel substrates which have undergone the chemical vapor deposition process to grow carbon-infiltrated carbon nanotubes. The model is derived from Fick’s Second Law, and predicts the growth of chromium carbide as a function of temperature and time. Chromium carbide formation is shown to be the mechanism of corrosion, as chromium atoms are leeched from the the matrix, preventing the formation of a passivating chromium oxide layer in place of problematic iron oxide (rust) formation. The model is validated using experimental methods, which involve immersion in bacteria culture, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX).


Author(s):  
Lara Rebaioli ◽  
Irene Fassi

Abstract Lab on Chips (LOCs) are devices, mostly based on microfluidics, that allow to perform one or several chemical, biochemical or biological analysis in a miniaturized format on a single chip. The Additive Manufacturing processes, and in particular the Digital Light Processing stereolithography (DLP-SLA), could quickly produce a complete LOC with high resolution 3D features in a single step, i.e. without the need for assembly processes, and using low cost and user-friendly desktop machines. However, the potential of DLP-SLA to produce non-planar channels or channels with complex sections has not been fully investigated yet. This study proposes a benchmark artifact (including also some channels with their axis lying in a plane parallel to the machine building platform) aiming at assessing the capability and performance of DLP-SLA for manufacturing microfeatures for microfluidic devices. A proper experimental campaign was performed to evaluate the effect of the main process parameters (namely, layer thickness and exposure time) on the process performance. The results pointed out that both the process parameters influence the quality and dimensional accuracy of the analyzed features.


Author(s):  
Nadia Ebrahimpour Tolouei ◽  
Shima Ghamari ◽  
Mohammad Shavezipur

Abstract Chemical and biological detection using Electrochemistry Impedance Spectroscopy (EIS) highly depends on the electrical characteristics of the electrodes used in the measurement process. In this work, the effect of surface coating on behavior of interdigitated impedance-based biochemical sensors is studied. Two interdigitated sensors with the same geometry and different electrode materials are fabricated using a standard process. One electrode is made of gold and the other electrode is made of polycrystalline silicon covered with a thin layer of native silicon dioxide. Different concentrations of di(2-ethylhexyl) phthalate (DEHP) in water are used and the Nyquist responses of the two sensors exposed to these solutions are obtained. The measurement results show that at high frequency both sensors form double-layer capacitance values on their electrode surfaces, however, the silicon sensor has a much lower double-layer capacitance values, because formation of oxide layer adds to the gap between charges at the interface of the electrode and the solution. Moreover, comparing the low frequency regions of the Nyquist plots for two sensors shows that the presence of oxide layer affects the Warburg effect and the charge diffusion near the surface of the electrode, creating an extra capacitive element in series with the diffusion effect. The results of this work may be extended to other interdigitated biochemical sensors that may have other sources of contamination on their surfaces.


Author(s):  
Zifu Xu ◽  
Longqiu Li ◽  
Jiaxin Li

Abstract The capability of thermal metamaterials is required from single function to multifunction under different external heat conditions. The methods to develop thermal materials by simple structural transformations have been explored. While, the components of traditional thermal metamaterial are mainly set as solid materials, which is difficult to change the composition of materials, such as recombing and fixing the spatial position of material, because of material rigidity. Therefore, the potential of thermal materials is limited. Liquid has fluidity in spatial structure, for which the efficient combination of solid-liquid materials provides an avenue for dynamically modeling thermal field. Herein, we propose the concept of two-phase thermal metamaterial, which is switchable by microscale elements. On one side, we develop a switchable thermal meta-unit manipulated by micro-element under the gradient field and explore the process of heat transfer by focusing on radiation and conduction under translucent media condition. Otherwise, we propose a method to achieve a non-reciprocal heat transfer system by the design of two-phase media. The propose of two-phase thermal metamaterials set a general background for a variety of applications for complex conditions.


Author(s):  
Mohammad H. Hasan ◽  
Fadi Alsaleem

Abstract In this work, we show the computational potential of MEMS devices by predicting the dynamics of a 10th order nonlinear auto-regressive moving average (NARMA10) dynamical system. Modeling this system is considered complex due to its high nonlinearity and dependency on its previous values. To model the NARMA10 system, we used a reservoir computing scheme by utilizing one MEMS device as a reservoir, produced by the interaction of 100 virtual nodes. The virtual nodes are attained by sampling the input of the MEMS device and modulating this input using a random modulation mask. The interaction between virtual nodes within the system was produced through delayed feedback and temporal dependence. Using this approach, the MEMS device was capable of adequately capturing the NARMA10 response with a normalized root mean square error (NRMSE) = 6.18% and 6.43% for the training and testing sets, respectively. In practice, the MEMS device would be superior to simulated reservoirs due to its ability to perform this complex computing task in real time.


Author(s):  
Nadia Ebrahimpour Tolouei ◽  
Mohammad Shavezipur

Abstract The present work introduces a novel design that linearizes the characteristic capacitance-pressure (C-P) response of the pressure sensor in contact mode. The design relies on patterning the insulating (dielectric) layer that separates the two electrodes of the device when the device is in contact mode. Since the capacitance is inversely proportional to the gap between the electrodes and the dielectric constant of the insulating layer is several times more than that of air (or vacuum), the contact region of the two electrodes makes more significant contribution to the overall capacitance of the system. Therefore, if the dielectric layer is properly patterned, the shape of C-P response can be controlled. In this work, we focus on linearity of the sensor response, and design and optimize dielectric pattern to achieve the highest linearity. Finite element simulations are used to demonstrate the applicability of the design concept. Different sensor designs are modeled and simulated using ANSYS® Multiphysics solver and their responses are compared to that of a conventional capacitive pressure sensor. Coefficient of linear correlation between pressure and capacitance is used as a quantitative measure for improvement of linearity. The simulation results show that the linearity of the C-P response improves from 0.930 in a 600 μm-diameter conventional design to 0.978 for a sensor with patterned dielectric layer. Moreover, a smaller sensor with 300 μm diameter display linearity of 0.999 over a 1.25 MPa – 5.0 MPa pressure range.


Sign in / Sign up

Export Citation Format

Share Document