Incorporating expert knowledge in object-oriented genetic programming

Author(s):  
Michael Richard Medland ◽  
Kyle Robert Harrison ◽  
Beatrice Ombuki-Berman
Author(s):  
Vikram R. Jamalabad ◽  
Noshir A. Langrana ◽  
Yogesh Jaluria

Abstract The main thrust of this research is in developing a knowledge-based system for the design of a mechanical engineering process. The study concentrates on developing methodologies for initial design and redesign in a qualitative format. The component selected is a die for plastic extrusion. A design algorithm using best first heuristic search and expert knowledge, both in procedural and declarative form, forms the core of the process. Initial design and redesign methodologies are presented that can enable efficient design of a component using expert knowledge. Some generality has been accomplished by the implementation of the techniques to dies of different cross sectional shapes. The software is written in Lisp within an object oriented software package using analysis modules written in C.


2020 ◽  
Vol 28 (1) ◽  
pp. 141-163 ◽  
Author(s):  
Masanori Suganuma ◽  
Masayuki Kobayashi ◽  
Shinichi Shirakawa ◽  
Tomoharu Nagao

The convolutional neural network (CNN), one of the deep learning models, has demonstrated outstanding performance in a variety of computer vision tasks. However, as the network architectures become deeper and more complex, designing CNN architectures requires more expert knowledge and trial and error. In this article, we attempt to automatically construct high-performing CNN architectures for a given task. Our method uses Cartesian genetic programming (CGP) to encode the CNN architectures, adopting highly functional modules such as a convolutional block and tensor concatenation, as the node functions in CGP. The CNN structure and connectivity, represented by the CGP, are optimized to maximize accuracy using the evolutionary algorithm. We also introduce simple techniques to accelerate the architecture search: rich initialization and early network training termination. We evaluated our method on the CIFAR-10 and CIFAR-100 datasets, achieving competitive performance with state-of-the-art models. Remarkably, our method can find competitive architectures with a reasonable computational cost compared to other automatic design methods that require considerably more computational time and machine resources.


Author(s):  
W. Cao ◽  
X. H. Tong ◽  
S. C. Liu ◽  
D. Wang

Using high resolution satellite imagery to detect, analyse and extract landslides automatically is an increasing strong support for rapid response after disaster. This requires the formulation of procedures and knowledge that encapsulate the content of disaster area in the images. Object-oriented approach has been proved useful in solving this issue by partitioning land-cover parcels into objects and classifies them on the basis of expert rules. Since the landslides information present in the images is often complex, the extraction procedure based on the object-oriented approach should consider primarily the semantic aspects of the data. In this paper, we propose a scheme for recognizing landslides by using an object-oriented analysis technique and a semantic reasoning model on high spatial resolution optical imagery. Three case regions with different data sources are presented to evaluate its practicality. The procedure is designed as follows: first, the Gray Level Co-occurrence Matrix (GLCM) is used to extract texture features after the image explanation. Spectral features, shape features and thematic features are derived for semiautomatic landslide recognition. A semantic reasoning model is used afterwards to refine the classification results, by representing expert knowledge as first-order logic (FOL) rules. The experimental results are essentially consistent with the experts’ field interpretation, which demonstrate the feasibility and accuracy of the proposed approach. The results also show that the scheme has a good generality on diverse data sources.


Sign in / Sign up

Export Citation Format

Share Document