General Graph Data De-Anonymization

2016 ◽  
Vol 18 (4) ◽  
pp. 1-29 ◽  
Author(s):  
Shouling Ji ◽  
Weiqing Li ◽  
Mudhakar Srivatsa ◽  
Jing Selena He ◽  
Raheem Beyah
Keyword(s):  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Mona Lundin

This study explores the use of a new protocol in hypertension care, in which continuous patient-generated data reported through digital technology are presented in graphical form and discussed in follow-up consultations with nurses. This protocol is part of an infrastructure design project in which patients and medical professionals are co-designers. The approach used for the study was interaction analysis, which rendered possible detailed in situ examination of local variations in how nurses relate to the protocol. The findings show three distinct engagements: (1) teasing out an average blood pressure, (2) working around the protocol and graph data and (3) delivering an analysis. It was discovered that the graphical representations structured the consultations to a great extent, and that nurses mostly referred to graphs that showed blood pressure values, which is a measurement central to the medical discourse of hypertension. However, it was also found that analysis of the data alone was not sufficient to engage patients: nurses' invisible and inclusion work through eliciting patients' narratives played an important role here. A conclusion of the study is that nurses and patients both need to be more thoroughly introduced to using protocols based on graphs for more productive consultations to be established. 


Author(s):  
Marcus Paradies ◽  
Stefan Plantikow ◽  
Oskar van Rest

2019 ◽  
Vol 30 (4) ◽  
pp. 24-40
Author(s):  
Lei Li ◽  
Fang Zhang ◽  
Guanfeng Liu

Big graph data is different from traditional data and they usually contain complex relationships and multiple attributes. With the help of graph pattern matching, a pattern graph can be designed, satisfying special personal requirements and locate the subgraphs which match the required pattern. Then, how to locate a graph pattern with better attribute values in the big graph effectively and efficiently becomes a key problem to analyze and deal with big graph data, especially for a specific domain. This article introduces fuzziness into graph pattern matching. Then, a genetic algorithm, specifically an NSGA-II algorithm, and a particle swarm optimization algorithm are adopted for multi-fuzzy-objective optimization. Experimental results show that the proposed approaches outperform the existing approaches effectively.


Sign in / Sign up

Export Citation Format

Share Document