Author(s):  
Janet H. Hsiao ◽  
Hui Lan ◽  
Yueyuan Zheng ◽  
Antoni B. Chan

AbstractThe eye movement analysis with hidden Markov models (EMHMM) method provides quantitative measures of individual differences in eye-movement pattern. However, it is limited to tasks where stimuli have the same feature layout (e.g., faces). Here we proposed to combine EMHMM with the data mining technique co-clustering to discover participant groups with consistent eye-movement patterns across stimuli for tasks involving stimuli with different feature layouts. Through applying this method to eye movements in scene perception, we discovered explorative (switching between the foreground and background information or different regions of interest) and focused (mainly looking at the foreground with less switching) eye-movement patterns among Asian participants. Higher similarity to the explorative pattern predicted better foreground object recognition performance, whereas higher similarity to the focused pattern was associated with better feature integration in the flanker task. These results have important implications for using eye tracking as a window into individual differences in cognitive abilities and styles. Thus, EMHMM with co-clustering provides quantitative assessments on eye-movement patterns across stimuli and tasks. It can be applied to many other real-life visual tasks, making a significant impact on the use of eye tracking to study cognitive behavior across disciplines.


2015 ◽  
Vol 135 (12) ◽  
pp. 1517-1523 ◽  
Author(s):  
Yicheng Jin ◽  
Takuto Sakuma ◽  
Shohei Kato ◽  
Tsutomu Kunitachi

Author(s):  
M. Vidyasagar

This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. It starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematical, making it useful to engineers and mathematicians, even those not interested in biological applications. A range of exercises is provided, including drills to familiarize the reader with concepts and more advanced problems that require deep thinking about the theory. Biological applications are taken from post-genomic biology, especially genomics and proteomics. The topics examined include standard material such as the Perron–Frobenius theorem, transient and recurrent states, hitting probabilities and hitting times, maximum likelihood estimation, the Viterbi algorithm, and the Baum–Welch algorithm. The book contains discussions of extremely useful topics not usually seen at the basic level, such as ergodicity of Markov processes, Markov Chain Monte Carlo (MCMC), information theory, and large deviation theory for both i.i.d and Markov processes. It also presents state-of-the-art realization theory for hidden Markov models. Among biological applications, it offers an in-depth look at the BLAST (Basic Local Alignment Search Technique) algorithm, including a comprehensive explanation of the underlying theory. Other applications such as profile hidden Markov models are also explored.


Sign in / Sign up

Export Citation Format

Share Document