scholarly journals A generic algorithm for checking exhaustivity of pattern matching (short paper)

Author(s):  
Fengyun Liu
Author(s):  
Patrick Echlin

The unusual title of this short paper and its accompanying tutorial is deliberate, because the intent is to investigate the effectiveness of low temperature microscopy and analysis as one of the more significant elements of the less interventionist procedures we can use to prepare, examine and analyse hydrated and organic materials in high energy beam instruments. The promises offered by all these procedures are well rehearsed and the litany of petitions and responses may be enunciated in the following mantra.Vitrified water can form the perfect embedding medium for bio-organic samples.Frozen samples provide an important, but not exclusive, milieu for the in situ sub-cellular analysis of the dissolved ions and electrolytes whose activities are central to living processes.The rapid conversion of liquids to solids provides a means of arresting dynamic processes and permits resolution of the time resolved interactions between water and suspended and dissolved materials.The low temperature environment necessary for cryomicroscopy and analysis, diminish, but alas do not prevent, the deleterious side effects of ionizing radiation.Sample contamination is virtually eliminated.


2005 ◽  
Vol 33 (1) ◽  
pp. 2-17 ◽  
Author(s):  
D. Colbry ◽  
D. Cherba ◽  
J. Luchini

Abstract Commercial databases containing images of tire tread patterns are currently used by product designers, forensic specialists and product application personnel to identify whether a given tread pattern matches an existing tire. Currently, this pattern matching process is almost entirely manual, requiring visual searches of extensive libraries of tire tread patterns. Our work explores a first step toward automating this pattern matching process by building on feature analysis techniques from computer vision and image processing to develop a new method for extracting and classifying features from tire tread patterns and automatically locating candidate matches from a database of existing tread pattern images. Our method begins with a selection of tire tread images obtained from multiple sources (including manufacturers' literature, Web site images, and Tire Guides, Inc.), which are preprocessed and normalized using Two-Dimensional Fast Fourier Transforms (2D-FFT). The results of this preprocessing are feature-rich images that are further analyzed using feature extraction algorithms drawn from research in computer vision. A new, feature extraction algorithm is developed based on the geometry of the 2D-FFT images of the tire. The resulting FFT-based analysis allows independent classification of the tire images along two dimensions, specifically by separating “rib” and “lug” features of the tread pattern. Dimensionality of (0,0) indicates a smooth treaded tire with no pattern; dimensionality of (1,0) and (0,1) are purely rib and lug tires; and dimensionality of (1,1) is an all-season pattern. This analysis technique allows a candidate tire to be classified according to the features of its tread pattern, and other tires with similar features and tread pattern classifications can be automatically retrieved from the database.


2017 ◽  
Vol 5 (1) ◽  
pp. 8-15
Author(s):  
Sergii Hilgurt ◽  

The multi-pattern matching is a fundamental technique found in applications like a network intrusion detection system, anti-virus, anti-worms and other signature- based information security tools. Due to rising traffic rates, increasing number and sophistication of attacks and the collapse of Moore’s law, traditional software solutions can no longer keep up. Therefore, hardware approaches are frequently being used by developers to accelerate pattern matching. Reconfigurable FPGA-based devices, providing the flexibility of software and the near-ASIC performance, have become increasingly popular for this purpose. Hence, increasing the efficiency of reconfigurable information security tools is a scientific issue now. Many different approaches to constructing hardware matching circuits on FPGAs are known. The most widely used of them are based on discrete comparators, hash-functions and finite automata. Each approach possesses its own pros and cons. None of them still became the leading one. In this paper, a method to combine several different approaches to enforce their advantages has been developed. An analytical technique to quickly advance estimate the resource costs of each matching scheme without need to compile FPGA project has been proposed. It allows to apply optimization procedures to near-optimally split the set of pattern between different approaches in acceptable time.


Author(s):  
Araceli Bonifant ◽  
Misha Lyubich ◽  
Scott Sutherland

John Milnor, best known for his work in differential topology, K-theory, and dynamical systems, is one of only three mathematicians to have won the Fields medal, the Abel prize, and the Wolf prize, and is the only one to have received all three of the Leroy P. Steele prizes. In honor of his eightieth birthday, this book gathers together surveys and papers inspired by Milnor's work, from distinguished experts examining not only holomorphic dynamics in one and several variables, but also differential geometry, entropy theory, and combinatorial group theory. The book contains the last paper written by William Thurston, as well as a short paper by John Milnor himself. Introductory sections put the papers in mathematical and historical perspective, color figures are included, and an index facilitates browsing.


Author(s):  
S., R. Muthasyabiha

Geochemical analysis is necessary to enable the optimization of hydrocarbon exploration. In this research, it is used to determine the oil characteristics and the type of source rock candidates that produces hydrocarbon in the “KITKAT” Field and also to understand the quality, quantity and maturity of proven source rocks. The evaluation of source rock was obtained from Rock-Eval Pyrolysis (REP) to determine the hydrocarbon type and analysis of the value of Total Organic Carbon (TOC) was performed to know the quantity of its organic content. Analysis of Tmax value and Vitrinite Reflectance (Ro) was also performed to know the maturity level of the source rock samples. Then the oil characteristics such as the depositional environment of source rock candidate and where the oil sample develops were obtained from pattern matching and fingerprinting analysis of Biomarker data GC/GCMS. Moreover, these data are used to know the correlation of oil to source rock. The result of source rock evaluation shows that the Talangakar Formation (TAF) has all these parameters as a source rock. Organic material from Upper Talangakar Formation (UTAF) comes from kerogen type II/III that is capable of producing oil and gas (Espitalie, 1985) and Lower Talangakar Formation (LTAF) comes from kerogen type III that is capable of producing gas. All intervals of TAF have a quantity value from very good–excellent considerable from the amount of TOC > 1% (Peters and Cassa, 1994). Source rock maturity level (Ro > 0.6) in UTAF is mature–late mature and LTAF is late mature–over mature (Peters and Cassa, 1994). Source rock from UTAF has deposited in the transition environment, and source rock from LTAF has deposited in the terrestrial environment. The correlation of oil to source rock shows that oil sample is positively correlated with the UTAF.


Sign in / Sign up

Export Citation Format

Share Document