A multi-objective decomposition-based evolutionary algorithm with enhanced variable space diversity control

Author(s):  
Joel Chacón Castillo ◽  
Carlos Segura ◽  
Arturo Hernández Aguirre ◽  
Gara Miranda ◽  
Coromoto León
Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1959
Author(s):  
Qi You ◽  
Jun Sun ◽  
Feng Pan ◽  
Vasile Palade ◽  
Bilal Ahmad

The decomposition-based multi-objective evolutionary algorithm (MOEA/D) has shown remarkable effectiveness in solving multi-objective problems (MOPs). In this paper, we integrate the quantum-behaved particle swarm optimization (QPSO) algorithm with the MOEA/D framework in order to make the QPSO be able to solve MOPs effectively, with the advantage of the QPSO being fully used. We also employ a diversity controlling mechanism to avoid the premature convergence especially at the later stage of the search process, and thus further improve the performance of our proposed algorithm. In addition, we introduce a number of nondominated solutions to generate the global best for guiding other particles in the swarm. Experiments are conducted to compare the proposed algorithm, DMO-QPSO, with four multi-objective particle swarm optimization algorithms and one multi-objective evolutionary algorithm on 15 test functions, including both bi-objective and tri-objective problems. The results show that the performance of the proposed DMO-QPSO is better than other five algorithms in solving most of these test problems. Moreover, we further study the impact of two different decomposition approaches, i.e., the penalty-based boundary intersection (PBI) and Tchebycheff (TCH) approaches, as well as the polynomial mutation operator on the algorithmic performance of DMO-QPSO.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1960 ◽  
Author(s):  
Alejandro Marrero ◽  
Eduardo Segredo ◽  
Coromoto León ◽  
Carlos Segura

Encouraging healthy and balanced diet plans is one of the most important action points for governments around the world. Generating healthy, balanced and inexpensive menu plans that fulfil all the recommendations given by nutritionists is a complex and time-consuming task; because of this, computer science has an important role in this area. This paper deals with a novel constrained multi-objective formulation of the menu planning problem specially designed for school canteens that considers the minimisation of the cost and the minimisation of the level of repetition of the specific courses and food groups contained in the plans. Particularly, this paper proposes a multi-objective memetic approach based on the well-known multi-objective evolutionary algorithm based on decomposition (MOEA/D). A crossover operator specifically designed for this problem is included in the approach. Moreover, an ad-hoc iterated local search (ILS) is considered for the improvement phase. As a result, our proposal is referred to as ILS-MOEA/D. A wide experimental comparison against a recently proposed single-objective memetic scheme, which includes explicit mechanisms to promote diversity in the decision variable space, is provided. The experimental assessment shows that, even though the single-objective approach yields menu plans with lower costs, our multi-objective proposal offers menu plans with a significantly lower level of repetition of courses and food groups, with only a minor increase in cost. Furthermore, our studies demonstrate that the application of multi-objective optimisers can be used to implicitly promote diversity not only in the objective function space, but also in the decision variable space. Consequently, in contrast to the single-objective optimiser, there was no need to include an explicit strategy to manage the diversity in the decision space in the case of the multi-objective approach.


2008 ◽  
Vol 28 (6) ◽  
pp. 1570-1574
Author(s):  
Mi-qing LI ◽  
Jin-hua ZHENG ◽  
Biao LUO ◽  
Jun WU ◽  
Shi-hua WEN

Sign in / Sign up

Export Citation Format

Share Document