Autonomous Inductive Charging System for Battery-operated Electric Drones

Author(s):  
Majid Khonji ◽  
Mohammed Alshehhi ◽  
Chien-Ming Tseng ◽  
Chi-Kin Chau
Keyword(s):  
2019 ◽  
Vol 3 (1) ◽  
pp. 118-126 ◽  
Author(s):  
Prihangkasa Yudhiyantoro

This paper presents the implementation fuzzy logic control on the battery charging system. To control the charging process is a complex system due to the exponential relationship between the charging voltage, charging current and the charging time. The effective of charging process controller is needed to maintain the charging process. Because if the charging process cannot under control, it can reduce the cycle life of the battery and it can damage the battery as well. In order to get charging control effectively, the Fuzzy Logic Control (FLC) for a Valve Regulated Lead-Acid Battery (VRLA) Charger is being embedded in the charging system unit. One of the advantages of using FLC beside the PID controller is the fact that, we don’t need a mathematical model and several parameters of coefficient charge and discharge to software implementation in this complex system. The research is started by the hardware development where the charging method and the combination of the battery charging system itself to prepare, then the study of the fuzzy logic controller in the relation of the charging control, and the determination of the parameter for the charging unit will be carefully investigated. Through the experimental result and from the expert knowledge, that is very helpful for tuning of the  embership function and the rule base of the fuzzy controller.


2020 ◽  
Vol 15 (3) ◽  
pp. 235
Author(s):  
Eka Prasetyono ◽  
Luthfansyah Mohammad ◽  
Farid Dwi Murdianto

Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 307
Author(s):  
Zhaoxiong Huang ◽  
Zhenhao Li ◽  
Chun Sing Lai ◽  
Zhuoli Zhao ◽  
Xiaomei Wu ◽  
...  

This work presents a novel blockchain-based energy trading mechanism for electric vehicles consisting of day-ahead and real-time markets. In the day-ahead market, electric vehicle users submit their bidding price to participate in the double auction mechanism. Subsequently, the smart match mechanism will be conducted by the charging system operator, to meet both personal interests and social benefits. After clearing the trading result, the charging system operator uploads the trading contract made in the day-ahead market to the blockchain. In the real-time market, the charging system operator checks the trading status and submits the updated trading results to the blockchain. This mechanism encourages participants in the double auction to pursue higher interests, in addition to rationally utilize the energy unmatched in the auction and to achieve the improvement of social welfare. Case studies are used to demonstrate the effectiveness of the proposed model. For buyers and sellers who successfully participate in the day-ahead market, the total profit increase for buyer and seller are 22.79% and 53.54%, respectively, as compared to without energy trading. With consideration of social welfare in the smart match mechanism, the peak load reduces from 182 to 146.5 kW, which is a 19.5% improvement.


Energy ◽  
2016 ◽  
Vol 100 ◽  
pp. 82-90 ◽  
Author(s):  
Muhammad Aziz ◽  
Takuya Oda ◽  
Masakazu Ito

Sign in / Sign up

Export Citation Format

Share Document