Sensitivity Analysis of Cost Elements in Rail Transit System Using EO-FNN

Author(s):  
Hengxin Yin ◽  
Senhua Lai ◽  
Gang Xu ◽  
Quan Yuan ◽  
Guofei Gao ◽  
...  
Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 164
Author(s):  
Jianwei Shao ◽  
Cuidong Xu ◽  
Ka Wai Eric Cheng

The rail transit system is a large electric vehicle system that is strongly dependent on the energy technologies of the power system. The use of new energy-saving amorphous alloy transformers can not only reduce the loss of rail transit power, but also help alleviate the power shortage situation and electromagnetic emissions. The application of the transformer in the field of rail transit is limited by the problem that amorphous alloy is prone to debris. this paper studied the stress conditions of amorphous alloy transformer cores under different working conditions and determined that the location where the core is prone to fragmentation, which is the key problem of smoothly integrating amorphous alloy distribution transformers on rail transit power supply systems. In this study, we investigate the changes in the electromagnetic field and stress of the amorphous alloy transformer core under different operating conditions. The finite element model of an amorphous alloy transformer is established and verified. The simulation results of the magnetic field and stress of the core under different working conditions are given. The no-load current and no-load loss are simulated and compared with the actual experimental data to verify practicability of amorphous alloy transformers. The biggest influence on the iron core is the overload state and the maximum value is higher than the core stress during short circuit. The core strain caused by the side-phase short circuit is larger than the middle-phase short circuit.


1969 ◽  
Vol 3 (4) ◽  
pp. 297-316 ◽  
Author(s):  
Franz J. M. Salzborn
Keyword(s):  

2018 ◽  
Vol 38 ◽  
pp. 03038
Author(s):  
Ran Liao

With the vigorous development of urban rail transit system, especially the construction of subway system, the safety of subway system draws more and more attention. The study of anti-seismic for underground structures has also become an important problem to be solved in the construction of Metro system. Based on the typical underground structure seismic damage phenomenon, this paper summarizes the seismic characteristics, research methods and design methods of underground structures to offer a guide for engineers.


2012 ◽  
Vol 5 ◽  
pp. 71-76
Author(s):  
Yu Ping Wang ◽  
Ya Ping Zhang ◽  
Hui Zhi Xu

As the major distributing center and intermediate transit point, the scale of transfer station in urban rail transit system directly affects the operational efficiency and overall cost of the entire system. So, accurately controlling the scale of transfer station becomes one of the most important aspects in improving service level and reducing the overall project cost. On the basis of summarizing the method on determining the scale of transfer station both home and abroad, the paper describes the role of the various facilities in rail transfer station, and illustrates the problems of our rail transfer station. Following the above discussion and investigation, the sizes of typical transfer station facilities are discussed and improved (e.g. vertical elevator). Taking the Longjiang Street station example, the proposed methods and models are verified and the analysis result shows that this transfer station should be cross platform interchange mode.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Pengpeng Jiao ◽  
Ruimin Li ◽  
Tuo Sun ◽  
Zenghao Hou ◽  
Amir Ibrahim

Short-term prediction of passenger flow is very important for the operation and management of a rail transit system. Based on the traditional Kalman filtering method, this paper puts forward three revised models for real-time passenger flow forecasting. First, the paper introduces the historical prediction error into the measurement equation and formulates a revised Kalman filtering model based on error correction coefficient (KF-ECC). Second, this paper employs the deviation between real-time passenger flow and corresponding historical data as state variable and presents a revised Kalman filtering model based on Historical Deviation (KF-HD). Third, the paper integrates nonparametric regression forecast into the traditional Kalman filtering method using a Bayesian combined technique and puts forward a revised Kalman filtering model based on Bayesian combination and nonparametric regression (KF-BCNR). A case study is implemented using statistical passenger flow data of rail transit line 13 in Beijing during a one-month period. The reported prediction results show that KF-ECC improves the applicability to historical trend, KF-HD achieves excellent accuracy and stability, and KF-BCNR yields the best performances. Comparisons among different periods further indicate that results during peak periods outperform those during nonpeak periods. All three revised models are accurate and stable enough for on-line predictions, especially during the peak periods.


Sign in / Sign up

Export Citation Format

Share Document