scholarly journals Study on the Scale Determination of Urban Rail Transfer Station

2012 ◽  
Vol 5 ◽  
pp. 71-76
Author(s):  
Yu Ping Wang ◽  
Ya Ping Zhang ◽  
Hui Zhi Xu

As the major distributing center and intermediate transit point, the scale of transfer station in urban rail transit system directly affects the operational efficiency and overall cost of the entire system. So, accurately controlling the scale of transfer station becomes one of the most important aspects in improving service level and reducing the overall project cost. On the basis of summarizing the method on determining the scale of transfer station both home and abroad, the paper describes the role of the various facilities in rail transfer station, and illustrates the problems of our rail transfer station. Following the above discussion and investigation, the sizes of typical transfer station facilities are discussed and improved (e.g. vertical elevator). Taking the Longjiang Street station example, the proposed methods and models are verified and the analysis result shows that this transfer station should be cross platform interchange mode.

2014 ◽  
Vol 1065-1069 ◽  
pp. 3334-3338 ◽  
Author(s):  
Chang Jun Cai ◽  
Lei Shan Zhou ◽  
Yong Feng Shang

With the urban rail transit becoming more and more networked, determining the departure time of last trains has been an important part for the urban rail transit network operations organization. First analyze two aspects of passengers and vehicles to determine reasonable time intervals of last trains, then analyze last train departure time optimization, minimizing the total loss in the transfer station as the objective to build the mathematical model, by adding and shifting line at the transfer station to reduce the connection direction loss, an auxiliary line being added or not according to the operating time so as to determine the final operation result. Finally, use the Beijing subway to verify and the result shows that the method has practical significance for the improvement of urban rail transit operation organization.


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1665
Author(s):  
Nan Cao ◽  
Tao Tang ◽  
Chunhai Gao

Transfer synchronization is an important issue in timetable scheduling for an urban rail transit system, especially a cross-platform transfer. In this paper, we aim to optimize the performance of transfer throughout the daily operation of an urban rail transit system. The daily operation is divided into multiple time periods and each time period has a specific headway to fulfill time varied passenger demand. At the same time, the turn-back process of trains should also be considered for a real operation. Therefore, our work enhances the base of the transfer synchronization model taking into account time-dependent passenger demand and utilization of trains. A mixed integer programming model is developed to obtain an optimal timetable, providing a smooth transfer for cross-transfer platform and minimizing the transfer waiting time for all transfer passengers from different directions with consideration of timetable symmetry. By adjusting the departure time of trains based on a predetermined timetable, this transfer optimization model is solved through a genetic algorithm. The proposed model and algorithm are utilized for a real transfer problem in Beijing and the results demonstrate a significant reduction in transfer waiting time.


2021 ◽  
pp. 2150461
Author(s):  
Xiang Li ◽  
Yan Bai ◽  
Kaixiong Su

The increase of urban traffic demands has directly affected some large cities that are now dealing with more serious urban rail transit congestion. In order to ensure the travel efficiency of passengers and improve the service level of urban rail transit, we proposed a multi-line collaborative passenger flow control model for urban rail transit networks. The model constructed here is based on passenger flow characteristics and congestion propagation rules. Considering the passenger demand constraints, as well as section transport and station capacity constraints, a linear programming model is established with the aim of minimizing total delayed time of passengers and minimizing control intensities at each station. The network constructed by Line 2, Line 6 and Line 8 of the Beijing metro is the study case used in this research to analyze control stations, control durations and control intensities. The results show that the number of delayed passengers is significantly reduced and the average flow control ratio is relatively balanced at each station, which indicates that the model can effectively relieve congestion and provide quantitative references for urban rail transit operators to come up with new and more effective passenger flow control measures.


2018 ◽  
Vol 38 ◽  
pp. 03038
Author(s):  
Ran Liao

With the vigorous development of urban rail transit system, especially the construction of subway system, the safety of subway system draws more and more attention. The study of anti-seismic for underground structures has also become an important problem to be solved in the construction of Metro system. Based on the typical underground structure seismic damage phenomenon, this paper summarizes the seismic characteristics, research methods and design methods of underground structures to offer a guide for engineers.


Sign in / Sign up

Export Citation Format

Share Document