Development of Tsunami Evacuation Simulation System for Disaster Prevention Plan in Urban Space

Author(s):  
Yasuo Kawai ◽  
Yurie Kaizu
Author(s):  
Takao Kakizaki ◽  
Jiro Urii ◽  
Mitsuru Endo

A 3D mass evacuation simulation using precise kinematic digital human (KDH) models and an experimental study are discussed. The tidal wave associated with the large tsunami caused by the Great East Japan Earthquake was responsible for more than 90% of the disaster casualties. Unfortunately, it is expected that other huge tsunamis could occur in Japan coastal areas if an earthquake with magnitude greater than 8 occurred along the Nankai Trough. Therefore, recent disaster prevention plans should include evacuation to higher buildings, elevated ground, and construction of tsunami evacuation towers. In the evacuation simulation with 500 KDHs, the mass consists of several subgroups. It is shown that the possible evacuation path of each group should be carefully determined to minimize the evacuation time. Several properties such as evacuee motion characteristics of KDHs, number of evacuees, exit gates and, number of injured persons were carefully considered in the simulation. Evacuee motion was also experimentally investigated by building a test field that simulates the structure of an actual tsunami evacuation tower for accommodating approximately 120 evacuees. The experimental results suggest that an appropriately divided group population may effectively reduce the overall group evacuation time. The results also suggest that the fatigue due to walking during evacuation adversely affect the total evacuation time, especially the ascent of stairways. The experimental data can be used to obtain more accurate simulations of mass evacuation.


2012 ◽  
Vol 610-613 ◽  
pp. 836-840
Author(s):  
Zhen You ◽  
Qing Feng Jiang

Jiangsu coastal has the huge development potential. With the development, more and more person and property are exposed. Therefore, to strengthen the disaster prevention and mitigation planning is imperative. The paper analysis the influence factors on the storm surge and completed the storm surge risk regionalization by system clustering method. The results show 7 risk grades in Jiangsu coastal. The Xishu-Dabantiao is the highest risk grade coastal, and the Sheyang estuary-Dongling port is the lowest risk grade coastal. According to the storm surge risk grade and exposed property, with minimum cost, the biggest benefit and full use of existing resource as the basic principle, the paper put forward pertinent planning scheme to prevent storm surge disaster.


2021 ◽  
Vol 11 (24) ◽  
pp. 11909
Author(s):  
Wei Chen ◽  
Yijun Shi ◽  
Wei Wang ◽  
Wenjing Li ◽  
Chao Wu

As an important space for disaster prevention, the construction of emergency shelters is crucial for the creation of a complete disaster relief facility network. Based on the goal of the prevention of day and night disaster, short-term fixed shelters are taken as the study object of the present work, and models are designed for evacuation simulation and the spatial optimization of shelters. According to the simulation, 680 of the 2334 demand points were found to be incompletely evacuated, and the average time for everyone to be evacuated was 10.3 min. Moreover, of the 888 short-term fixed shelters, only 218 did not reach their maximum capacity. In the context of short-term fixed sheltering, Haizhu was found to have the largest number of non-evacuated people (1.11 million), and the average number of non-evacuated people in Yuexiu was the largest (2184). According to the spatial optimization data of the shelters, the numbers of target plots for new shelter resources that must be added in Haizhu, Yuexiu, Liwa, and Tianhe are 406, 164, 141, and 136, respectively, the effective shelter areas of which are 2,621,100, 2,175,300, 812,100, and 1,344,600 m2, respectively. A total of 487 short-term fixed shelters and 360 temporary shelters were newly added, and the recommended scales for Haizhu, Liwan, Tianhe, and Yuexiu were 243, 70, 58, and 116, respectively, with average effective areas of 6169 m2, 5577 m2, 8707 m2, and 12,931 m2, respectively. Additionally, the recommended scales of newly added temporary shelters in Haizhu, Liwan, Tianhe, and Yuexiu are 163, 71, 78, and 48, with an average effective area of 2706, 2581, 4017, and 6234 m2, respectively. These findings provide a direct quantitative basis for the spatial optimization of various types of emergency shelters, and the method proposed in this paper supports the planning and layout of emergency shelters, as well as the improvement of the efficiency of urban resource allocation.


Sign in / Sign up

Export Citation Format

Share Document