scholarly journals The Spatial Optimization of Emergency Shelters Based on an Urban-Scale Evacuation Simulation

2021 ◽  
Vol 11 (24) ◽  
pp. 11909
Author(s):  
Wei Chen ◽  
Yijun Shi ◽  
Wei Wang ◽  
Wenjing Li ◽  
Chao Wu

As an important space for disaster prevention, the construction of emergency shelters is crucial for the creation of a complete disaster relief facility network. Based on the goal of the prevention of day and night disaster, short-term fixed shelters are taken as the study object of the present work, and models are designed for evacuation simulation and the spatial optimization of shelters. According to the simulation, 680 of the 2334 demand points were found to be incompletely evacuated, and the average time for everyone to be evacuated was 10.3 min. Moreover, of the 888 short-term fixed shelters, only 218 did not reach their maximum capacity. In the context of short-term fixed sheltering, Haizhu was found to have the largest number of non-evacuated people (1.11 million), and the average number of non-evacuated people in Yuexiu was the largest (2184). According to the spatial optimization data of the shelters, the numbers of target plots for new shelter resources that must be added in Haizhu, Yuexiu, Liwa, and Tianhe are 406, 164, 141, and 136, respectively, the effective shelter areas of which are 2,621,100, 2,175,300, 812,100, and 1,344,600 m2, respectively. A total of 487 short-term fixed shelters and 360 temporary shelters were newly added, and the recommended scales for Haizhu, Liwan, Tianhe, and Yuexiu were 243, 70, 58, and 116, respectively, with average effective areas of 6169 m2, 5577 m2, 8707 m2, and 12,931 m2, respectively. Additionally, the recommended scales of newly added temporary shelters in Haizhu, Liwan, Tianhe, and Yuexiu are 163, 71, 78, and 48, with an average effective area of 2706, 2581, 4017, and 6234 m2, respectively. These findings provide a direct quantitative basis for the spatial optimization of various types of emergency shelters, and the method proposed in this paper supports the planning and layout of emergency shelters, as well as the improvement of the efficiency of urban resource allocation.

Significance Many areas of the Caribbean have trade, investment and family connections with communities in Florida. As the state now plays a pivotal role in US electoral politics, crises in the region can take on added political importance for parts of Florida’s electorate. Impacts Forecasts of short-term economic recovery for Florida remain highly uncertain given the continuing impact of the pandemic. Clashing interests across the Caribbean may demand greater coordination of US policy than the government can currently offer. Healthcare and disaster relief capabilities within the state are severely overstretched and could be overwhelmed by a new crisis.


Author(s):  
Takao Kakizaki ◽  
Jiro Urii ◽  
Mitsuru Endo

A 3D mass evacuation simulation using precise kinematic digital human (KDH) models and an experimental study are discussed. The tidal wave associated with the large tsunami caused by the Great East Japan Earthquake was responsible for more than 90% of the disaster casualties. Unfortunately, it is expected that other huge tsunamis could occur in Japan coastal areas if an earthquake with magnitude greater than 8 occurred along the Nankai Trough. Therefore, recent disaster prevention plans should include evacuation to higher buildings, elevated ground, and construction of tsunami evacuation towers. In the evacuation simulation with 500 KDHs, the mass consists of several subgroups. It is shown that the possible evacuation path of each group should be carefully determined to minimize the evacuation time. Several properties such as evacuee motion characteristics of KDHs, number of evacuees, exit gates and, number of injured persons were carefully considered in the simulation. Evacuee motion was also experimentally investigated by building a test field that simulates the structure of an actual tsunami evacuation tower for accommodating approximately 120 evacuees. The experimental results suggest that an appropriately divided group population may effectively reduce the overall group evacuation time. The results also suggest that the fatigue due to walking during evacuation adversely affect the total evacuation time, especially the ascent of stairways. The experimental data can be used to obtain more accurate simulations of mass evacuation.


2020 ◽  
Vol 9 (1) ◽  
pp. 41 ◽  
Author(s):  
Wei Chen ◽  
Yao Fang ◽  
Qing Zhai ◽  
Wei Wang ◽  
Yijie Zhang

Mapping the fine-scale spatial distribution of emergency shelter demand is crucial for shelter planning during disasters. To provide shelter for people within a reasonable evacuation distance under day and night disaster scenarios, we formed an approach for examining the distribution of day and night shelter demand at the plot-scale using point of interest (POI) data, and then analyzed the supply and demand status of shelters after an evacuation simulation built in Python programming language. Taking the downtown areas of Guangzhou, China as a case study, the results show that significant differences exist in the size and spatial distribution of shelter demand in daytime and nighttime, and the total demand is 7.929 million people, which is far larger than the resident population. The average evacuation time of all 16,883 routes is 12.6 min, and after the evacuation, 558 of 888 shelters exceed their capacity to varying degrees, accounting for 62.84% of the total, indicating that the shelters cannot completely receive the potential evacuees. The method proposed in this paper provides a direct quantitative basis for the number and size of new shelter resources being planned during urban renewal activities, and form a reference for land reuse and disaster prevention space organization in future urban planning.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3966
Author(s):  
Theodoros Anagnostopoulos ◽  
Theodoros Xanthopoulos ◽  
Yannis Psaromiligkos

Resource allocation of the availability of certain departments for dealing with emergency recovery is of high importance in municipalities. Efficient planning for facing possible disasters in the coverage area of a municipality provides reassurance for citizens. Citizens can assist with such malfunctions by acting as human sensors at the edge of an infrastructure to provide instant feedback to the appropriate departments fixing the problems. However, municipalities have limited department resources to handle upcoming emergency events. In this study, we propose a smartphone crowdsensing system that is based on citizens’ reactions as human sensors at the edge of a municipality infrastructure to supplement malfunctions exploiting environmental crowdsourcing location-allocation capabilities. A long short-term memory (LSTM) neural network is incorporated to learn the occurrence of such emergencies. The LSTM is able to stochastically predict future emergency situations, acting as an early warning component of the system. Such a mechanism may be used to provide adequate department resource allocation to treat future emergencies.


2016 ◽  
Vol 89 ◽  
pp. 71-105 ◽  
Author(s):  
Philip L. Smith ◽  
Simon D. Lilburn ◽  
Elaine A. Corbett ◽  
David K. Sewell ◽  
Søren Kyllingsbæk

Sign in / Sign up

Export Citation Format

Share Document