scholarly journals Iterated lower bound formulas: a diagonalization-based approach to proof complexity

Author(s):  
Rahul Santhanam ◽  
Iddo Tzameret
Keyword(s):  
2018 ◽  
Vol 28 (02) ◽  
pp. 217-256
Author(s):  
Fu Li ◽  
Iddo Tzameret

We use results from the theory of algebras with polynomial identities (PI-algebras) to study the witness complexity of matrix identities. A matrix identity of [Formula: see text] matrices over a field [Formula: see text]is a non-commutative polynomial (f(x1, …, xn)) over [Formula: see text], such that [Formula: see text] vanishes on every [Formula: see text] matrix assignment to its variables. For every field [Formula: see text]of characteristic 0, every [Formula: see text] and every finite basis of [Formula: see text] matrix identities over [Formula: see text], we show there exists a family of matrix identities [Formula: see text], such that each [Formula: see text] has [Formula: see text] variables and requires at least [Formula: see text] many generators to generate, where the generators are substitution instances of elements from the basis. The lower bound argument uses fundamental results from PI-algebras together with a generalization of the arguments in [P. Hrubeš, How much commutativity is needed to prove polynomial identities? Electronic colloquium on computational complexity, ECCC, Report No.: TR11-088, June 2011].We apply this result in algebraic proof complexity, focusing on proof systems for polynomial identities (PI proofs) which operate with algebraic circuits and whose axioms are the polynomial-ring axioms [P. Hrubeš and I. Tzameret, The proof complexity of polynomial identities, in Proc. 24th Annual IEEE Conf. Computational Complexity, CCC 2009, 15–18 July 2009, Paris, France (2009), pp. 41–51; Short proofs for the determinant identities, SIAM J. Comput. 44(2) (2015) 340–383], and their subsystems. We identify a decrease in strength hierarchy of subsystems of PI proofs, in which the [Formula: see text]th level is a sound and complete proof system for proving [Formula: see text] matrix identities (over a given field). For each level [Formula: see text] in the hierarchy, we establish an [Formula: see text] lower bound on the number of proof-steps needed to prove certain identities.Finally, we present several concrete open problems about non-commutative algebraic circuits and speed-ups in proof complexity, whose solution would establish stronger size lower bounds on PI proofs of matrix identities, and beyond.


2000 ◽  
Vol 7 (10) ◽  
Author(s):  
Stefan Dantchev ◽  
Søren Riis

One of the earliest proposed hard problems for theorem provers is<br />a propositional version of the Mutilated Chessboard problem. It is well<br />known from recreational mathematics: Given a chessboard having two<br />diagonally opposite squares removed, prove that it cannot be covered with<br />dominoes. In Proof Complexity, we consider not ordinary, but 2n * 2n<br />mutilated chessboard. In the paper, we show a 2^Omega(n) lower bound for tree resolution.


2019 ◽  
Vol 485 (2) ◽  
pp. 142-144
Author(s):  
A. A. Zevin

Solutions x(t) of the Lipschitz equation x = f(x) with an arbitrary vector norm are considered. It is proved that the sharp lower bound for the distances between successive extremums of xk(t) equals π/L where L is the Lipschitz constant. For non-constant periodic solutions, the lower bound for the periods is 2π/L. These estimates are achieved for norms that are invariant with respect to permutation of the indices.


10.37236/1188 ◽  
1994 ◽  
Vol 1 (1) ◽  
Author(s):  
Geoffrey Exoo

For $k \geq 5$, we establish new lower bounds on the Schur numbers $S(k)$ and on the k-color Ramsey numbers of $K_3$.


10.37236/1748 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Nagi H. Nahas

The best lower bound known on the crossing number of the complete bipartite graph is : $$cr(K_{m,n}) \geq (1/5)(m)(m-1)\lfloor n/2 \rfloor \lfloor(n-1)/2\rfloor$$ In this paper we prove that: $$cr(K_{m,n}) \geq (1/5)m(m-1)\lfloor n/2 \rfloor \lfloor (n-1)/2 \rfloor + 9.9 \times 10^{-6} m^2n^2$$ for sufficiently large $m$ and $n$.


Sign in / Sign up

Export Citation Format

Share Document