Predicting Application Performance in LoRa IoT Networks

Author(s):  
Natchaya Chungsawat ◽  
Peerapon Siripongwutikorn
Author(s):  
Simab Hasan Rizvi

In Today's age of Tetra Scale computing, the application has become more data intensive than ever. The increased data volume from applications, in now tackling larger and larger problems, and has fuelled the need for efficient management of this data. In this paper, a technique called Content Addressable Storage or CAS, for managing large volume of data is evaluated. This evaluation focuses on the benefits and demerits of using CAS it focuses, i) improved application performance via lockless and lightweight synchronization ofaccess to shared storage data, ii) improved cache performance, iii) increase in storage capacity and, iv) increase network bandwidth. The presented design of a CAS-Based file store significantly improves the storage performance that provides lightweight lock less user defined consistency semantics. As a result, this file system shows a 28% increase in read bandwidth and 13% increase in write bandwidth, over a popular file system in common use. In this paper the potential benefits of using CAS for a virtual machine are estimated. The study also explains mobility application for active use and public deployment.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1389
Author(s):  
Julia García Cabello ◽  
Pedro A. Castillo ◽  
Maria-del-Carmen Aguilar-Luzon ◽  
Francisco Chiclana ◽  
Enrique Herrera-Viedma

Standard methodologies for redesigning physical networks rely on Geographic Information Systems (GIS), which strongly depend on local demographic specifications. The absence of a universal definition of demography makes its use for cross-border purposes much more difficult. This paper presents a Decision Making Model (DMM) for redesigning networks that works without geographical constraints. There are multiple advantages of this approach: on one hand, it can be used in any country of the world; on the other hand, the absence of geographical constraints widens the application scope of our approach, meaning that it can be successfully implemented either in physical (ATM networks) or non-physical networks such as in group decision making, social networks, e-commerce, e-governance and all fields in which user groups make decisions collectively. Case studies involving both types of situations are conducted in order to illustrate the methodology. The model has been designed under a data reduction strategy in order to improve application performance.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1590
Author(s):  
Arnak Poghosyan ◽  
Ashot Harutyunyan ◽  
Naira Grigoryan ◽  
Clement Pang ◽  
George Oganesyan ◽  
...  

The main purpose of an application performance monitoring/management (APM) software is to ensure the highest availability, efficiency and security of applications. An APM software accomplishes the main goals through automation, measurements, analysis and diagnostics. Gartner specifies the three crucial capabilities of APM softwares. The first is an end-user experience monitoring for revealing the interactions of users with application and infrastructure components. The second is application discovery, diagnostics and tracing. The third key component is machine learning (ML) and artificial intelligence (AI) powered data analytics for predictions, anomaly detection, event correlations and root cause analysis. Time series metrics, logs and traces are the three pillars of observability and the valuable source of information for IT operations. Accurate, scalable and robust time series forecasting and anomaly detection are the requested capabilities of the analytics. Approaches based on neural networks (NN) and deep learning gain an increasing popularity due to their flexibility and ability to tackle complex nonlinear problems. However, some of the disadvantages of NN-based models for distributed cloud applications mitigate expectations and require specific approaches. We demonstrate how NN-models, pretrained on a global time series database, can be applied to customer specific data using transfer learning. In general, NN-models adequately operate only on stationary time series. Application to nonstationary time series requires multilayer data processing including hypothesis testing for data categorization, category specific transformations into stationary data, forecasting and backward transformations. We present the mathematical background of this approach and discuss experimental results based on implementation for Wavefront by VMware (an APM software) while monitoring real customer cloud environments.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 292
Author(s):  
Kai Zhang ◽  
Meijian Bai ◽  
Yinong Li ◽  
Shaohui Zhang ◽  
Di Xu

The broadcast fertilization method is widely used under basin irrigation in China. A reasonable broadcast fertilization method can effectively improve application performance of fertilization and reduce pollution from non-point agricultural sources. In this study, firstly, a non-uniform broadcast fertilization method and a non-uniform application coefficient were proposed. The value of non-uniform application coefficient is defined in this paper. It represents the ratio of the difference between the maximum and the average fertilization amount of fertilizer applied on the basin surface to the average fertilization amount of fertilizer applied on the basin surface. Secondly, field experiments were conducted to study the movement characteristics of fertilizer under non-uniform broadcast fertilization for basin irrigation. Field experiment results showed that under the condition of basin irrigation, the non-uniform broadcast fertilization method could weaken the non-uniform distribution of fertilizer due to erosion and transport capacity of solid fertilizer by irrigation water flow, which could significantly improve the uniformity of soil solute content. Thirdly, the solute transport model for broadcast fertilization was corroborated by the field experiment results. The variation rule of fertilization performance with non-uniform application coefficient under different basin length and inflow rate was achieved by simulation. The simulation results showed that fertilization uniformity and fertilization storage efficiency increased first and then decreased with the increase of non-uniform application coefficient. In order to be practically applicable, suitable irrigation programs of non-uniform application coefficient under different basin length and inflow rate conditions were proposed by numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document