Coarse-To-Fine Framework For Music Generation via Generative Adversarial Networks

Author(s):  
Dan Ma ◽  
Bin Liu ◽  
Xiyu Qiao ◽  
Danni Cao ◽  
Guosheng Yin
2020 ◽  
Vol 34 (07) ◽  
pp. 12829-12836 ◽  
Author(s):  
Ling Zhang ◽  
Chengjiang Long ◽  
Xiaolong Zhang ◽  
Chunxia Xiao

Residual images and illumination estimation have been proved very helpful in image enhancement. In this paper, we propose a general and novel framework RIS-GAN which explores residual and illumination with Generative Adversarial Networks for shadow removal. Combined with the coarse shadow-removal image, the estimated negative residual images and inverse illumination maps can be used to generate indirect shadow-removal images to refine the coarse shadow-removal result to the fine shadow-free image in a coarse-to-fine fashion. Three discriminators are designed to distinguish whether the predicted negative residual images, shadow-removal images, and the inverse illumination maps are real or fake jointly compared with the corresponding ground-truth information. To our best knowledge, we are the first one to explore residual and illumination for shadow removal. We evaluate our proposed method on two benchmark datasets, i.e., SRD and ISTD, and the extensive experiments demonstrate that our proposed method achieves the superior performance to state-of-the-arts, although we have no particular shadow-aware components designed in our generators.


2017 ◽  
Author(s):  
Benjamin Sanchez-Lengeling ◽  
Carlos Outeiral ◽  
Gabriel L. Guimaraes ◽  
Alan Aspuru-Guzik

Molecular discovery seeks to generate chemical species tailored to very specific needs. In this paper, we present ORGANIC, a framework based on Objective-Reinforced Generative Adversarial Networks (ORGAN), capable of producing a distribution over molecular space that matches with a certain set of desirable metrics. This methodology combines two successful techniques from the machine learning community: a Generative Adversarial Network (GAN), to create non-repetitive sensible molecular species, and Reinforcement Learning (RL), to bias this generative distribution towards certain attributes. We explore several applications, from optimization of random physicochemical properties to candidates for drug discovery and organic photovoltaic material design.


Sign in / Sign up

Export Citation Format

Share Document