Why an Android App Is Classified as Malware

2021 ◽  
Vol 30 (2) ◽  
pp. 1-29
Author(s):  
Bozhi Wu ◽  
Sen Chen ◽  
Cuiyun Gao ◽  
Lingling Fan ◽  
Yang Liu ◽  
...  

Machine learning–(ML) based approach is considered as one of the most promising techniques for Android malware detection and has achieved high accuracy by leveraging commonly used features. In practice, most of the ML classifications only provide a binary label to mobile users and app security analysts. However, stakeholders are more interested in the reason why apps are classified as malicious in both academia and industry. This belongs to the research area of interpretable ML but in a specific research domain (i.e., mobile malware detection). Although several interpretable ML methods have been exhibited to explain the final classification results in many cutting-edge Artificial Intelligent–based research fields, until now, there is no study interpreting why an app is classified as malware or unveiling the domain-specific challenges. In this article, to fill this gap, we propose a novel and interpretable ML-based approach (named XMal ) to classify malware with high accuracy and explain the classification result meanwhile. (1) The first classification phase of XMal hinges multi-layer perceptron and attention mechanism and also pinpoints the key features most related to the classification result. (2) The second interpreting phase aims at automatically producing neural language descriptions to interpret the core malicious behaviors within apps. We evaluate the behavior description results by leveraging a human study and an in-depth quantitative analysis. Moreover, we further compare XMal with the existing interpretable ML-based methods (i.e., Drebin and LIME) to demonstrate the effectiveness of XMal . We find that XMal is able to reveal the malicious behaviors more accurately. Additionally, our experiments show that XMal can also interpret the reason why some samples are misclassified by ML classifiers. Our study peeks into the interpretable ML through the research of Android malware detection and analysis.

2015 ◽  
Vol 9 (6) ◽  
pp. 313-320 ◽  
Author(s):  
Suleiman Y. Yerima ◽  
Igor Muttik ◽  
Sakir Sezer

2021 ◽  
Vol 30 (3) ◽  
pp. 1-32
Author(s):  
Deqing Zou ◽  
Yueming Wu ◽  
Siru Yang ◽  
Anki Chauhan ◽  
Wei Yang ◽  
...  

Android, the most popular mobile operating system, has attracted millions of users around the world. Meanwhile, the number of new Android malware instances has grown exponentially in recent years. On the one hand, existing Android malware detection systems have shown that distilling the program semantics into a graph representation and detecting malicious programs by conducting graph matching are able to achieve high accuracy on detecting Android malware. However, these traditional graph-based approaches always perform expensive program analysis and suffer from low scalability on malware detection. On the other hand, because of the high scalability of social network analysis, it has been applied to complete large-scale malware detection. However, the social-network-analysis-based method only considers simple semantic information (i.e., centrality) for achieving market-wide mobile malware scanning, which may limit the detection effectiveness when benign apps show some similar behaviors as malware. In this article, we aim to combine the high accuracy of traditional graph-based method with the high scalability of social-network-analysis--based method for Android malware detection. Instead of using traditional heavyweight static analysis, we treat function call graphs of apps as complex social networks and apply social-network--based centrality analysis to unearth the central nodes within call graphs. After obtaining the central nodes, the average intimacies between sensitive API calls and central nodes are computed to represent the semantic features of the graphs. We implement our approach in a tool called IntDroid and evaluate it on a dataset of 3,988 benign samples and 4,265 malicious samples. Experimental results show that IntDroid is capable of detecting Android malware with an F-measure of 97.1% while maintaining a True-positive Rate of 99.1%. Although the scalability is not as fast as a social-network-analysis--based method (i.e., MalScan ), compared to a traditional graph-based method, IntDroid is more than six times faster than MaMaDroid . Moreover, in a corpus of apps collected from GooglePlay market, IntDroid is able to identify 28 zero-day malware that can evade detection of existing tools, one of which has been downloaded and installed by more than ten million users. This app has also been flagged as malware by six anti-virus scanners in VirusTotal, one of which is Symantec Mobile Insight .


2020 ◽  
Vol 14 ◽  
Author(s):  
Meghna Dhalaria ◽  
Ekta Gandotra

Purpose: This paper provides the basics of Android malware, its evolution and tools and techniques for malware analysis. Its main aim is to present a review of the literature on Android malware detection using machine learning and deep learning and identify the research gaps. It provides the insights obtained through literature and future research directions which could help researchers to come up with robust and accurate techniques for classification of Android malware. Design/Methodology/Approach: This paper provides a review of the basics of Android malware, its evolution timeline and detection techniques. It includes the tools and techniques for analyzing the Android malware statically and dynamically for extracting features and finally classifying these using machine learning and deep learning algorithms. Findings: The number of Android users is expanding very fast due to the popularity of Android devices. As a result, there are more risks to Android users due to the exponential growth of Android malware. On-going research aims to overcome the constraints of earlier approaches for malware detection. As the evolving malware are complex and sophisticated, earlier approaches like signature based and machine learning based are not able to identify these timely and accurately. The findings from the review shows various limitations of earlier techniques i.e. requires more detection time, high false positive and false negative rate, low accuracy in detecting sophisticated malware and less flexible. Originality/value: This paper provides a systematic and comprehensive review on the tools and techniques being employed for analysis, classification and identification of Android malicious applications. It includes the timeline of Android malware evolution, tools and techniques for analyzing these statically and dynamically for the purpose of extracting features and finally using these features for their detection and classification using machine learning and deep learning algorithms. On the basis of the detailed literature review, various research gaps are listed. The paper also provides future research directions and insights which could help researchers to come up with innovative and robust techniques for detecting and classifying the Android malware.


2014 ◽  
Vol 11 (8) ◽  
pp. 1-14 ◽  
Author(s):  
Ping Xiong ◽  
Xiaofeng Wang ◽  
Wenjia Niu ◽  
Tianqing Zhu ◽  
Gang Li

Sign in / Sign up

Export Citation Format

Share Document