Intercepting a Stealthy Network

2021 ◽  
Vol 17 (2) ◽  
pp. 1-39
Author(s):  
Mai Ben Adar Bessos ◽  
Amir Herzberg

We investigate an understudied threat: networks of stealthy routers (S-Routers) , relaying messages to a hidden destination . The S-Routers relay communication along a path of multiple short-range, low-energy hops, to avoid remote localization by triangulation. Mobile devices called Interceptors can detect communication by an S-Router, but only when the Interceptor is next to the transmitting S-Router. We examine algorithms for a set of mobile Interceptors to find the destination of the communication relayed by the S-Routers. The algorithms are compared according to the number of communicating rounds before the destination is found, i.e., rounds in which data is transmitted from the source to the destination . We evaluate the algorithms analytically and using simulations, including against a parametric, optimized strategy for the S-Routers. Our main result is an Interceptors algorithm that bounds the expected number of communicating rounds by a term quasilinear in the number of S-Routers. For the case where S-Routers transmit at every round (“continuously”), we present an algorithm that improves this bound.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tamar Goldzak ◽  
Alexandra R. McIsaac ◽  
Troy Van Voorhis

AbstractColloidal CdSe nanocrystals (NCs) have shown promise in applications ranging from LED displays to medical imaging. Their unique photophysics depend sensitively on the presence or absence of surface defects. Using simulations, we show that CdSe NCs are inherently defective; even for stoichiometric NCs with perfect ligand passivation and no vacancies or defects, we still observe that the low energy spectrum is dominated by dark, surface-associated excitations, which are more numerous in larger NCs. Surface structure analysis shows that the majority of these states involve holes that are localized on two-coordinate Se atoms. As chalcogenide atoms are not passivated by any Lewis base ligand, varying the ligand should not dramatically change the number of dark states, which we confirm by simulating three passivation schemes. Our results have significant implications for understanding CdSe NC photophysics, and suggest that photochemistry and short-range photoinduced charge transfer should be much more facile than previously anticipated.


1990 ◽  
Vol 16 (1-12) ◽  
pp. 111-117 ◽  
Author(s):  
M. De Crescenzi ◽  
J. Derrien ◽  
L. Lozzi ◽  
P. Picozzi ◽  
S. Santucci

Author(s):  
Radu Ioan Ciobanu ◽  
Ciprian Dobre

When mobile devices are unable to establish direct communication, or when communication should be offloaded to cope with large throughputs, mobile collaboration can be used to facilitate communication through opportunistic networks. These types of networks, formed when mobile devices communicate only using short-range transmission protocols, usually when users are close, can help applications still exchange data. Routes are built dynamically, since each mobile device is acting according to the store-carry-and-forward paradigm. Thus, contacts are seen as opportunities to move data towards the destination. In such networks data dissemination is usually based on a publish/subscribe model. Opportunistic data dissemination also raises questions concerning user privacy and incentives. In this the authors present a motivation of using opportunistic networks in various real life use cases, and then analyze existing relevant work in the area of data dissemination. The authors present the categories of a proposed taxonomy that captures the capabilities of data dissemination techniques used in opportunistic networks. Moreover, the authors survey relevant techniques and analyze them using the proposed taxonomy.


2009 ◽  
pp. 1135-1142
Author(s):  
Victor I. Khashchanskiy ◽  
Andrei L. Kustov

One of the applications of m-commerce is mobile authorization, that is, rights distribution to mobile users by sending authorization data (a token) to the mobile devices. For example, a supermarket can distribute personalized discount coupon tokens to its customers via SMS. The token can be a symbol string that the customers will present while paying for the goods at the cash desk. The example can be elaborated further—using location information from the mobile operator, the coupons can only be sent to, for example, those customers who are in close vicinity of the mall on Saturday (this will of course require customers to allow disclosing their location). In the example above, the token is used through its manual presentation. However, most interesting is the case when the service is released automatically, without a need for a human operator validating the token and releasing a service to the customer; for example, a vending machine at the automatic gas station must work automatically to be commercially viable. To succeed, this approach requires a convenient and uniform way of delivering authorization information to the point of service—it is obvious that an average user will only have enough patience for very simple operations. And this presents a problem. There are basically only three available local (i.e., short-range) wireless interfaces (LWI): WLAN, IR, and Bluetooth, which do not cover the whole range of mobile devices. WLAN has not gained popularity yet, while IR is gradually disappearing. Bluetooth is the most frequently used of them, but still it is not available in all phones. For every particular device it is possible to send a token out using some combination of LWI and presentation technology, but there is no common and easy-to-use combination. This is a threshold for the development of services. Taking a deeper look at the mobile devices, we can find one more non-standard simplex LWI, which is present in all devices—acoustical, where the transmitter is a phone ringer. Token presentation through acoustic interface along with general solution of token delivery via SIM Toolkit technology (see 3GPP TS, 1999) was presented by Khashchanskiy and Kustov (2001). However, mobile operators have not taken SIM Toolkit into any serious use, and the only alternative way of delivering sound tokens into the phone-ringing tone customization technology was not available for a broad range of devices at the time the aforementioned paper was published. Quite unexpectedly, recent development of mobile phone technologies gives a chance for sound tokens to become a better solution for the aforementioned problem, compared with other LWI. Namely, it can be stated that every contemporary mobile device supports either remote customization of ringing tones, or MMS, and in the majority of cases, even both, thus facilitating sound token receiving over the air. Most phone models can playback a received token with only a few button-clicks. Thus, a sound token-based solution meets the set criteria better than any other LWI. Token delivery works the same way for virtually all phones, and token presentation is simple. In this article we study the sound token solution practical implementation in detail. First, we select optimal modulation, encoding, and recognition algorithm, and we estimate data rate. Then we present results of experimental verification.


1988 ◽  
Vol 03 (09) ◽  
pp. 877-882 ◽  
Author(s):  
LEONARD S. KISSLINGER

The energy dependence of the low-energy weak elastic proton-proton asymmetry in the Hybrid Quark Hadron model is opposite to that in conventional hadronic models. This can provide a test for quark cluster vs conventional models of short-range nuclear structure and reactions.


1950 ◽  
Vol 3 (4) ◽  
pp. 519
Author(s):  
P Swan

An attempt has been made to find an interaction between neutron and proton which will account for not only the binding energy and quadripole moment of the deuteron and the low energy scattering data, but also the results of the experiments on the scattering of 90 MeV. neutrons by protons. Three types of modification of the triplet neutron-proton interaction have been used which embody the following features : (1) A non-central potential of spherical well form, whose radius of interaction is varied. (2) A non-central potential whose form is closer to that of the pseudo-scalar meson potential than the usual Rarita-Schwinger form, but which does not possess the objectionable singularities of the former. (3) The inclusion of a large short-range repulsion. In each case exchange forces of the usual types have been used. The results obtained, like those of other workers in this field using different forms of interaction, fail to agree with the high energy data.


Sign in / Sign up

Export Citation Format

Share Document