scholarly journals A Data-driven System for City-wide Energy Footprinting and Apportionment

2021 ◽  
Vol 17 (2) ◽  
pp. 1-24
Author(s):  
Peter Wei ◽  
Xiaofan Jiang

Energy footprinting has the potential to raise awareness of energy consumption and lead to energy-saving behavior. However, current methods are largely restricted to single buildings; these methods require energy and occupancy monitoring sensor deployments, which can be expensive and difficult to deploy at scale. Further, current methods for estimating energy consumption and population at scale cannot provide fine enough temporal or spatial granularity for a reasonable personal energy footprint estimate. In this work, we present a data-driven system for city-wide estimation of personal energy footprints. This system takes advantage of existing sensing infrastructure and data sources in urban cities to provide energy and population estimates at the building level, even in built environments that do not have existing or accessible energy or population data.

Author(s):  
Patrik Puchert ◽  
Pedro Hermosilla ◽  
Tobias Ritschel ◽  
Timo Ropinski

AbstractDensity estimation plays a crucial role in many data analysis tasks, as it infers a continuous probability density function (PDF) from discrete samples. Thus, it is used in tasks as diverse as analyzing population data, spatial locations in 2D sensor readings, or reconstructing scenes from 3D scans. In this paper, we introduce a learned, data-driven deep density estimation (DDE) to infer PDFs in an accurate and efficient manner, while being independent of domain dimensionality or sample size. Furthermore, we do not require access to the original PDF during estimation, neither in parametric form, nor as priors, or in the form of many samples. This is enabled by training an unstructured convolutional neural network on an infinite stream of synthetic PDFs, as unbound amounts of synthetic training data generalize better across a deck of natural PDFs than any natural finite training data will do. Thus, we hope that our publicly available DDE method will be beneficial in many areas of data analysis, where continuous models are to be estimated from discrete observations.


2014 ◽  
Vol 631-632 ◽  
pp. 362-366
Author(s):  
Ning Ling Wang ◽  
Yong Zhang ◽  
Long Fei Zhu ◽  
Zhi Ping Yang

An accurate and reliable energy-consumption model is the key to operation optimization and energy-saving diagnosis of thermal power units especially under different operation conditions and boundaries. Conventional mathematical and data-driven modeling methods were overviewed and compared in this paper. A hybrid modeling based on thermodynamic theory and fuzzy rough set (FRS) method was proposed to process the great volume of operation data and describe the energy-consumption behavior of thermal power units. On this basis, the operation optimization was performed with intelligent computation methods to derive the realizable benchmark state with the whole set of operation parameters. The resultant optimum operation state reflects the exterior factors and system behavior, taking practical guidelines for the modeling and optimization of large thermal power units.


Sign in / Sign up

Export Citation Format

Share Document