Community Detection Algorithm based on Node Similarity in Signed Networks

Author(s):  
Zhi Bie ◽  
Lufeng Qian ◽  
Jie Ren
2021 ◽  
pp. 2150164
Author(s):  
Pengli Lu ◽  
Zhou Yu ◽  
Yuhong Guo

Community detection is important for understanding the structure and function of networks. Resistance distance is a kind of distance function inherent in the network itself, which has important applications in many fields. In this paper, we propose a novel community detection algorithm based on resistance distance and similarity. First, we propose the node similarity, which is based on the common nodes and resistance distance. Then, we define the distance function between nodes by similarity. Furthermore, we calculate the distance between communities by using the distance between nodes. Finally, we detect the community structure in the network according to the nearest-neighbor nodes being in the same community. Experimental results on artificial networks and real-world networks show that the proposed algorithm can effectively detect the community structures in complex networks.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Dongqing Zhou ◽  
Xing Wang

The paper addresses particle swarm optimization (PSO) into community detection problem, and an algorithm based on new label strategy is proposed. In contrast with other label propagation strategies, the main contribution of this paper is to design the definition of the impact of node and take it into use. Special initialization and update approaches based on it are designed in order to make full use of it. Experiments on synthetic and real-life networks show the effectiveness of proposed strategy. Furthermore, this strategy is extended to signed networks, and the corresponding objective function which is called modularity density is modified to be used in signed networks. Experiments on real-life networks also demonstrate that it is an efficacious way to solve community detection problem.


2013 ◽  
Vol 462-463 ◽  
pp. 458-461
Author(s):  
Jian Jun Cheng ◽  
Peng Fei Wang ◽  
Qi Bin Zhang ◽  
Zheng Quan Zhang ◽  
Ming Wei Leng ◽  
...  

This paper proposes an algorithm called DDSCDA, which is based on the concepts of the node degree difference and the node similarity. In the algorithm, we iteratively extract the node from the network with larger degree and certified the node as a kernel node, then take the kernel node as the founder or initiator of a community to attract its neighbors to join in that community; by doing so, we obtain a partition corresponding to a coarse-grained community structure of the network. Finally taken the coarse-grained community as a starting point, we use the strategy of LPA to propagate labels through the network further. At the end of the algorithm, we obtain the final community structure. We compared the performance with classical community detection algorithms such as LPA, LPAm, FastQ, etc., the experimental results have manifested that our proposal is a feasible algorithm, can extract higher quality communities from the network, and outperforms the previous algorithms significantly.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 680
Author(s):  
Hanyang Lin ◽  
Yongzhao Zhan ◽  
Zizheng Zhao ◽  
Yuzhong Chen ◽  
Chen Dong

There is a wealth of information in real-world social networks. In addition to the topology information, the vertices or edges of a social network often have attributes, with many of the overlapping vertices belonging to several communities simultaneously. It is challenging to fully utilize the additional attribute information to detect overlapping communities. In this paper, we first propose an overlapping community detection algorithm based on an augmented attribute graph. An improved weight adjustment strategy for attributes is embedded in the algorithm to help detect overlapping communities more accurately. Second, we enhance the algorithm to automatically determine the number of communities by a node-density-based fuzzy k-medoids process. Extensive experiments on both synthetic and real-world datasets demonstrate that the proposed algorithms can effectively detect overlapping communities with fewer parameters compared to the baseline methods.


Sign in / Sign up

Export Citation Format

Share Document