Dual Learning for Query Generation and Query Selection in Query Feeds Recommendation

2021 ◽  
Author(s):  
Kunxun Qi ◽  
Ruoxu Wang ◽  
Qikai Lu ◽  
Xuejiao Wang ◽  
Ning Jing ◽  
...  
Author(s):  
Cristina G. Wilson ◽  
Feifei Qian ◽  
Douglas J. Jerolmack ◽  
Sonia Roberts ◽  
Jonathan Ham ◽  
...  

AbstractHow do scientists generate and weight candidate queries for hypothesis testing, and how does learning from observations or experimental data impact query selection? Field sciences offer a compelling context to ask these questions because query selection and adaptation involves consideration of the spatiotemporal arrangement of data, and therefore closely parallels classic search and foraging behavior. Here we conduct a novel simulated data foraging study—and a complementary real-world case study—to determine how spatiotemporal data collection decisions are made in field sciences, and how search is adapted in response to in-situ data. Expert geoscientists evaluated a hypothesis by collecting environmental data using a mobile robot. At any point, participants were able to stop the robot and change their search strategy or make a conclusion about the hypothesis. We identified spatiotemporal reasoning heuristics, to which scientists strongly anchored, displaying limited adaptation to new data. We analyzed two key decision factors: variable-space coverage, and fitting error to the hypothesis. We found that, despite varied search strategies, the majority of scientists made a conclusion as the fitting error converged. Scientists who made premature conclusions, due to insufficient variable-space coverage or before the fitting error stabilized, were more prone to incorrect conclusions. We found that novice undergraduates used the same heuristics as expert geoscientists in a simplified version of the scenario. We believe the findings from this study could be used to improve field science training in data foraging, and aid in the development of technologies to support data collection decisions.


Author(s):  
Yanji Chen ◽  
Mieczyslaw M. Kokar ◽  
Jakub J. Moskal

AbstractThis paper describes a program—SPARQL Query Generator (SQG)—which takes as input an OWL ontology, a set of object descriptions in terms of this ontology and an OWL class as the context, and generates relatively large numbers of queries about various types of descriptions of objects expressed in RDF/OWL. The intent is to use SQG in evaluating data representation and retrieval systems from the perspective of OWL semantics coverage. While there are many benchmarks for assessing the efficiency of data retrieval systems, none of the existing solutions for SPARQL query generation focus on the coverage of the OWL semantics. Some are not scalable since manual work is needed for the generation process; some do not consider (or totally ignore) the OWL semantics in the ontology/instance data or rely on large numbers of real queries/datasets that are not readily available in our domain of interest. Our experimental results show that SQG performs reasonably well with generating large numbers of queries and guarantees a good coverage of OWL axioms included in the generated queries.


2018 ◽  
Author(s):  
Izzeddin Gur ◽  
Semih Yavuz ◽  
Yu Su ◽  
Xifeng Yan
Keyword(s):  

Author(s):  
Yu Zeng ◽  
Yan Gao ◽  
Jiaqi Guo ◽  
Bei Chen ◽  
Qian Liu ◽  
...  

Neural semantic parsers usually fail to parse long and complicated utterances into nested SQL queries, due to the large search space. In this paper, we propose a novel recursive semantic parsing framework called RECPARSER to generate the nested SQL query layer-by-layer. It decomposes the complicated nested SQL query generation problem into several progressive non-nested SQL query generation problems. Furthermore, we propose a novel Question Decomposer module to explicitly encourage RECPARSER to focus on different components of an utterance when predicting SQL queries of different layers. Experiments on the Spider dataset show that our approach is more effective compared to the previous works at predicting the nested SQL queries. In addition, we achieve an overall accuracy that is comparable with state-of-the-art approaches.


Sign in / Sign up

Export Citation Format

Share Document