field science
Recently Published Documents


TOTAL DOCUMENTS

136
(FIVE YEARS 29)

H-INDEX

12
(FIVE YEARS 1)

Photonics ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 357
Author(s):  
Runzhi Chen ◽  
Zhuo Shi ◽  
Guoqing Chang

Post-pulse-compression is demanded to produce energetic few-cycle pulses. We propose pre-chirp-managed adiabatic soliton compression (ASC) in gas-filled pressure-gradient hollow-core fibers to suppress the detrimental pedestals and therefore significantly improve the compressed pulse quality. We show that two-stage ASC can compress 125 μJ, 130 fs pulses at 2 μm to a nearly two-cycle pulse 15 fs in duration. Our analytical analysis suggests that ASC is in favor of compressing pulses centered at a longer wavelength. As an example, a 280 μJ, 220 fs Gaussian pulse at 4 μm is compressed to 60 fs with minimal pedestals. We expect that the resulting high-quality, energetic few-cycle pulses will find important applications in high-field science.


Author(s):  
Cristina G. Wilson ◽  
Feifei Qian ◽  
Douglas J. Jerolmack ◽  
Sonia Roberts ◽  
Jonathan Ham ◽  
...  

AbstractHow do scientists generate and weight candidate queries for hypothesis testing, and how does learning from observations or experimental data impact query selection? Field sciences offer a compelling context to ask these questions because query selection and adaptation involves consideration of the spatiotemporal arrangement of data, and therefore closely parallels classic search and foraging behavior. Here we conduct a novel simulated data foraging study—and a complementary real-world case study—to determine how spatiotemporal data collection decisions are made in field sciences, and how search is adapted in response to in-situ data. Expert geoscientists evaluated a hypothesis by collecting environmental data using a mobile robot. At any point, participants were able to stop the robot and change their search strategy or make a conclusion about the hypothesis. We identified spatiotemporal reasoning heuristics, to which scientists strongly anchored, displaying limited adaptation to new data. We analyzed two key decision factors: variable-space coverage, and fitting error to the hypothesis. We found that, despite varied search strategies, the majority of scientists made a conclusion as the fitting error converged. Scientists who made premature conclusions, due to insufficient variable-space coverage or before the fitting error stabilized, were more prone to incorrect conclusions. We found that novice undergraduates used the same heuristics as expert geoscientists in a simplified version of the scenario. We believe the findings from this study could be used to improve field science training in data foraging, and aid in the development of technologies to support data collection decisions.


2021 ◽  
Vol 53 (4) ◽  
Author(s):  
Jennifer Stern ◽  
Margaret Weng ◽  
Heather Graham ◽  
Jeffrey Bowman ◽  
Stanford Hooker ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document