scholarly journals RECPARSER: A Recursive Semantic Parsing Framework for Text-to-SQL Task

Author(s):  
Yu Zeng ◽  
Yan Gao ◽  
Jiaqi Guo ◽  
Bei Chen ◽  
Qian Liu ◽  
...  

Neural semantic parsers usually fail to parse long and complicated utterances into nested SQL queries, due to the large search space. In this paper, we propose a novel recursive semantic parsing framework called RECPARSER to generate the nested SQL query layer-by-layer. It decomposes the complicated nested SQL query generation problem into several progressive non-nested SQL query generation problems. Furthermore, we propose a novel Question Decomposer module to explicitly encourage RECPARSER to focus on different components of an utterance when predicting SQL queries of different layers. Experiments on the Spider dataset show that our approach is more effective compared to the previous works at predicting the nested SQL queries. In addition, we achieve an overall accuracy that is comparable with state-of-the-art approaches.

2021 ◽  
Vol 11 (12) ◽  
pp. 5656
Author(s):  
Yufan Zeng ◽  
Jiashan Tang

Graph neural networks (GNNs) have been very successful at solving fraud detection tasks. The GNN-based detection algorithms learn node embeddings by aggregating neighboring information. Recently, CAmouflage-REsistant GNN (CARE-GNN) is proposed, and this algorithm achieves state-of-the-art results on fraud detection tasks by dealing with relation camouflages and feature camouflages. However, stacking multiple layers in a traditional way defined by hop leads to a rapid performance drop. As the single-layer CARE-GNN cannot extract more information to fix the potential mistakes, the performance heavily relies on the only one layer. In order to avoid the case of single-layer learning, in this paper, we consider a multi-layer architecture which can form a complementary relationship with residual structure. We propose an improved algorithm named Residual Layered CARE-GNN (RLC-GNN). The new algorithm learns layer by layer progressively and corrects mistakes continuously. We choose three metrics—recall, AUC, and F1-score—to evaluate proposed algorithm. Numerical experiments are conducted. We obtain up to 5.66%, 7.72%, and 9.09% improvements in recall, AUC, and F1-score, respectively, on Yelp dataset. Moreover, we also obtain up to 3.66%, 4.27%, and 3.25% improvements in the same three metrics on the Amazon dataset.


Author(s):  
Siva Reddy ◽  
Mirella Lapata ◽  
Mark Steedman

In this paper we introduce a novel semantic parsing approach to query Freebase in natural language without requiring manual annotations or question-answer pairs. Our key insight is to represent natural language via semantic graphs whose topology shares many commonalities with Freebase. Given this representation, we conceptualize semantic parsing as a graph matching problem. Our model converts sentences to semantic graphs using CCG and subsequently grounds them to Freebase guided by denotations as a form of weak supervision. Evaluation experiments on a subset of the Free917 and WebQuestions benchmark datasets show our semantic parser improves over the state of the art.


Author(s):  
Kalev Kask ◽  
Bobak Pezeshki ◽  
Filjor Broka ◽  
Alexander Ihler ◽  
Rina Dechter

Abstraction Sampling (AS) is a recently introduced enhancement of Importance Sampling that exploits stratification by using a notion of abstractions: groupings of similar nodes into abstract states. It was previously shown that AS performs particularly well when sampling over an AND/OR search space; however, existing schemes were limited to ``proper'' abstractions in order to ensure unbiasedness, severely hindering scalability. In this paper, we introduce AOAS, a new Abstraction Sampling scheme on AND/OR search spaces that allow more flexible use of abstractions by circumventing the properness requirement. We analyze the properties of this new algorithm and, in an extensive empirical evaluation on five benchmarks, over 480 problems, and comparing against other state of the art algorithms, illustrate AOAS's properties and show that it provides a far more powerful and competitive Abstraction Sampling framework.


2003 ◽  
Vol 11 (2) ◽  
pp. 151-167 ◽  
Author(s):  
Andrea Toffolo ◽  
Ernesto Benini

A key feature of an efficient and reliable multi-objective evolutionary algorithm is the ability to maintain genetic diversity within a population of solutions. In this paper, we present a new diversity-preserving mechanism, the Genetic Diversity Evaluation Method (GeDEM), which considers a distance-based measure of genetic diversity as a real objective in fitness assignment. This provides a dual selection pressure towards the exploitation of current non-dominated solutions and the exploration of the search space. We also introduce a new multi-objective evolutionary algorithm, the Genetic Diversity Evolutionary Algorithm (GDEA), strictly designed around GeDEM and then we compare it with other state-of-the-art algorithms on a well-established suite of test problems. Experimental results clearly indicate that the performance of GDEA is top-level.


2016 ◽  
Vol 20 (08n11) ◽  
pp. 889-894 ◽  
Author(s):  
Maria Luz Rodriguez-Mendez ◽  
Celia García-Hernandez ◽  
Cristina Medina-Plaza ◽  
Cristina García-Cabezón ◽  
Jose Antonio de Saja

Arrays of phthalocyanine-based sensors with complementary activity have been used to develop voltammetric electronic tongues. Such systems have demonstrated to be useful in enology for the evaluation of quality of wines in different production stages, from grapes to bottles. In this paper, the state of the art of multisensor systems based on phthalocyanines dedicated to the analysis of musts (juices obtained from crushed grapes) is described. Such multisensor systems cover different types of sensors from simple Carbon Paste Electrodes, to sophiticated nanostructured sensors, including Langmuir–Blodgett or Layer by Layer thin films and biomimetic biosensors where phthalocyanines play a crucial role as electron mediator between enzymes and electrodes. In all cases, multisensor systems based on phthalocyanines have been able to discriminate musts prepared from different varieties of grapes. The performance of these systems can be improved by combining non-specific sensors with biosensors containing enzymes selective to phenols. In this case, excellent relationships have been found between the responses provided by the array and the content in phenols and acids provided by traditional chemical analysis.


2015 ◽  
Vol 764-765 ◽  
pp. 1390-1394
Author(s):  
Ruey Maw Chen ◽  
Frode Eika Sandnes

The permutation flow shop problem (PFSP) is an NP-hard permutation sequencing scheduling problem, many meta-heuristics based schemes have been proposed for finding near optimal solutions. A simple insertion simulated annealing (SISA) scheme consisting of two phases is proposed for solving PFSP. First, to reduce the complexity, a simple insertion local search is conducted for constructing the solution. Second, to ensure continuous exploration in the search space, two non-decreasing temperature control mechanisms named Heating SA and Steady SA are introduced in a simulated annealing (SA) procedure. The Heating SA increases the exploration search ability and the Steady SA enhances the exploitation search ability. The most important feature of SISA is its simple implementation and low computation time complexity. Experimental results are compared with other state-of-the-art algorithms and reveal that SISA is able to efficiently yield good permutation schedule.


2020 ◽  
Vol 34 (04) ◽  
pp. 6251-6258
Author(s):  
Qian-Wei Wang ◽  
Liang Yang ◽  
Yu-Feng Li

Weak-label learning deals with the problem where each training example is associated with multiple ground-truth labels simultaneously but only partially provided. This circumstance is frequently encountered when the number of classes is very large or when there exists a large ambiguity between class labels, and significantly influences the performance of multi-label learning. In this paper, we propose LCForest, which is the first tree ensemble based deep learning method for weak-label learning. Rather than formulating the problem as a regularized framework, we employ the recently proposed cascade forest structure, which processes information layer-by-layer, and endow it with the ability of exploiting from weak-label data by a concise and highly efficient label complement structure. Specifically, in each layer, the label vector of each instance from testing-fold is modified with the predictions of random forests trained with the corresponding training-fold. Since the ground-truth label matrix is inaccessible, we can not estimate the performance via cross-validation directly. In order to control the growth of cascade forest, we adopt label frequency estimation and the complement flag mechanism. Experiments show that the proposed LCForest method compares favorably against the existing state-of-the-art multi-label and weak-label learning methods.


2018 ◽  
Vol 6 ◽  
pp. 343-356 ◽  
Author(s):  
Egoitz Laparra ◽  
Dongfang Xu ◽  
Steven Bethard

This paper presents the first model for time normalization trained on the SCATE corpus. In the SCATE schema, time expressions are annotated as a semantic composition of time entities. This novel schema favors machine learning approaches, as it can be viewed as a semantic parsing task. In this work, we propose a character level multi-output neural network that outperforms previous state-of-the-art built on the TimeML schema. To compare predictions of systems that follow both SCATE and TimeML, we present a new scoring metric for time intervals. We also apply this new metric to carry out a comparative analysis of the annotations of both schemes in the same corpus.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2957
Author(s):  
Alina Osypova ◽  
Matthias Dübner ◽  
Guido Panzarasa

Chemo-mechanical phenomena, including oscillations and peristaltic motions, are widespread in nature—just think of heartbeats—thanks to the ability of living organisms to convert directly chemical energy into mechanical work. Their imitation with artificial systems is still an open challenge. Chemical clocks and oscillators (such as the popular Belousov–Zhabotinsky (BZ) reaction) are reaction networks characterized by the emergence of peculiar spatiotemporal dynamics. Their application to polymers at interfaces (grafted chains, layer-by-layer assemblies, and polymer brushes) offers great opportunities for developing novel smart biomimetic materials. Despite the wide field of potential applications, limited research has been carried out so far. Here, we aim to showcase the state-of-the-art of this fascinating field of investigation, highlighting the potential for future developments and providing a personal outlook.


Sign in / Sign up

Export Citation Format

Share Document