scholarly journals Revisiting State Augmentation methods for Reinforcement Learning with Stochastic Delays

2021 ◽  
Author(s):  
Somjit Nath ◽  
Mayank Baranwal ◽  
Harshad Khadilkar
2020 ◽  
Vol 34 (01) ◽  
pp. 1112-1119 ◽  
Author(s):  
Yunan Ye ◽  
Hengzhi Pei ◽  
Boxin Wang ◽  
Pin-Yu Chen ◽  
Yada Zhu ◽  
...  

Portfolio management (PM) is a fundamental financial planning task that aims to achieve investment goals such as maximal profits or minimal risks. Its decision process involves continuous derivation of valuable information from various data sources and sequential decision optimization, which is a prospective research direction for reinforcement learning (RL). In this paper, we propose SARL, a novel State-Augmented RL framework for PM. Our framework aims to address two unique challenges in financial PM: (1) data heterogeneity – the collected information for each asset is usually diverse, noisy and imbalanced (e.g., news articles); and (2) environment uncertainty – the financial market is versatile and non-stationary. To incorporate heterogeneous data and enhance robustness against environment uncertainty, our SARL augments the asset information with their price movement prediction as additional states, where the prediction can be solely based on financial data (e.g., asset prices) or derived from alternative sources such as news. Experiments on two real-world datasets, (i) Bitcoin market and (ii) HighTech stock market with 7-year Reuters news articles, validate the effectiveness of SARL over existing PM approaches, both in terms of accumulated profits and risk-adjusted profits. Moreover, extensive simulations are conducted to demonstrate the importance of our proposed state augmentation, providing new insights and boosting performance significantly over standard RL-based PM method and other baselines.


Author(s):  
Shuai Ma ◽  
Jia Yuan Yu

In the framework of MDP, although the general reward function takes three arguments—current state, action, and successor state; it is often simplified to a function of two arguments—current state and action. The former is called a transition-based reward function, whereas the latter is called a state-based reward function. When the objective involves the expected total reward only, this simplification works perfectly. However, when the objective is risk-sensitive, this simplification leads to an incorrect value. We propose three successively more general state-augmentation transformations (SATs), which preserve the reward sequences as well as the reward distributions and the optimal policy in risk-sensitive reinforcement learning. In risk-sensitive scenarios, firstly we prove that, for every MDP with a stochastic transition-based reward function, there exists an MDP with a deterministic state-based reward function, such that for any given (randomized) policy for the first MDP, there exists a corresponding policy for the second MDP, such that both Markov reward processes share the same reward sequence. Secondly we illustrate that two situations require the proposed SATs in an inventory control problem. One could be using Q-learning (or other learning methods) on MDPs with transition-based reward functions, and the other could be using methods, which are for the Markov processes with a deterministic state-based reward functions, on the Markov processes with general reward functions. We show the advantage of the SATs by considering Value-at-Risk as an example, which is a risk measure on the reward distribution instead of the measures (such as mean and variance) of the distribution. We illustrate the error in the reward distribution estimation from the reward simplification, and show how the SATs enable a variance formula to work on Markov processes with general reward functions.


Decision ◽  
2016 ◽  
Vol 3 (2) ◽  
pp. 115-131 ◽  
Author(s):  
Helen Steingroever ◽  
Ruud Wetzels ◽  
Eric-Jan Wagenmakers

Sign in / Sign up

Export Citation Format

Share Document