ASTRO

2021 ◽  
Vol 2 (4) ◽  
pp. 1-22
Author(s):  
Riccardo Petrolo ◽  
Zhambyl Shaikhanov ◽  
Yingyan Lin ◽  
Edward Knightly

We present the design, implementation, and experimental evaluation of ASTRO, a modular end-to-end system for distributed sensing missions with autonomous networked drones. We introduce the fundamental system architecture features that enable agnostic sensing missions on top of the ASTRO drones. We demonstrate the key principles of ASTRO by using on-board software-defined radios to find and track a mobile radio target. We show how simple distributed on-board machine learning methods can be used to find and track a mobile target, even if all drones lose contact with a ground control. Also, we show that ASTRO is able to find the target even if it is hiding under a three-ton concrete slab, representing a highly irregular propagation environment. Our findings reveal that, despite no prior training and noisy sensory measurements, ASTRO drones are able to learn the propagation environment in the scale of seconds and localize a target with a mean accuracy of 8 m. Moreover, ASTRO drones are able to track the target with relatively constant error over time, even as it moves at a speed close to the maximum drone speed.

BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 7079-7099
Author(s):  
Jianying Chen ◽  
Guojing He ◽  
Xiaodong (Alice) Wang ◽  
Jiejun Wang ◽  
Jin Yi ◽  
...  

Timber-concrete composite beams are a new type of structural element that is environmentally friendly. The structural efficiency of this kind of beam highly depends on the stiffness of the interlayer connection. The structural efficiency of the composite was evaluated by experimental and theoretical investigations performed on the relative horizontal slip and vertical uplift along the interlayer between composite’s timber and concrete slab. Differential equations were established based on a theoretical analysis of combination effects of interlayer slip and vertical uplift, by using deformation theory of elastics. Subsequently, the differential equations were solved and the magnitude of uplift force at the interlayer was obtained. It was concluded that the theoretical calculations were in good agreement with the results of experimentation.


2009 ◽  
Vol E92-B (12) ◽  
pp. 3606-3615 ◽  
Author(s):  
Chen SUN ◽  
Yohannes D. ALEMSEGED ◽  
Ha Nguyen TRAN ◽  
Hiroshi HARADA

Sign in / Sign up

Export Citation Format

Share Document