scholarly journals Smooth Approximation of Lipschitz Maps and Their Subgradients

2022 ◽  
Vol 69 (1) ◽  
pp. 1-32
Author(s):  
Abbas Edalat

We derive new representations for the generalised Jacobian of a locally Lipschitz map between finite dimensional real Euclidean spaces as the lower limit (i.e., limit inferior) of the classical derivative of the map where it exists. The new representations lead to significantly shorter proofs for the basic properties of the subgradient and the generalised Jacobian including the chain rule. We establish that a sequence of locally Lipschitz maps between finite dimensional Euclidean spaces converges to a given locally Lipschitz map in the L-topology—that is, the weakest refinement of the sup norm topology on the space of locally Lipschitz maps that makes the generalised Jacobian a continuous functional—if and only if the limit superior of the sequence of directional derivatives of the maps in a given vector direction coincides with the generalised directional derivative of the given map in that direction, with the convergence to the limit superior being uniform for all unit vectors. We then prove our main result that the subspace of Lipschitz C ∞ maps between finite dimensional Euclidean spaces is dense in the space of Lipschitz maps equipped with the L-topology, and, for a given Lipschitz map, we explicitly construct a sequence of Lipschitz C ∞ maps converging to it in the L-topology, allowing global smooth approximation of a Lipschitz map and its differential properties. As an application, we obtain a short proof of the extension of Green’s theorem to interval-valued vector fields. For infinite dimensions, we show that the subgradient of a Lipschitz map on a Banach space is upper continuous, and, for a given real-valued Lipschitz map on a separable Banach space, we construct a sequence of Gateaux differentiable functions that converges to the map in the sup norm topology such that the limit superior of the directional derivatives in any direction coincides with the generalised directional derivative of the Lipschitz map in that direction.

2018 ◽  
Vol 6 (1) ◽  
pp. 174-191 ◽  
Author(s):  
Giuliano Basso

AbstractWe consider Lipschitz maps with values in quasi-metric spaces and extend such maps to finitely many points. We prove that in this context every 1-Lipschitz map admits an extension such that its Lipschitz constant is bounded from above by the number of added points plus one. Moreover, we prove that if the source space is a Hilbert space and the target space is a Banach space, then there exists an extension such that its Lipschitz constant is bounded from above by the square root of the total of added points plus one. We discuss applications to metric transforms.


2011 ◽  
Vol 21 (03) ◽  
pp. 703-710 ◽  
Author(s):  
YUANLONG CHEN ◽  
YU HUANG ◽  
LIANGLIANG LI

In this paper, we consider the persistence of snap-back repellers under small C1 perturbations in Banach spaces. Let X be a Banach space and f be a C1-map from X into itself. We show that if f has a snap-back repeller, then any small C1 perturbations of f has a snap-back repeller and exhibits chaos in the sense of Devaney. The obtained results further extend the existing relevant results in finite-dimensional Euclidean spaces. As applications, we will discuss the chaotic behavior of two nonlocal population models.


2003 ◽  
Vol 2003 (10) ◽  
pp. 601-619 ◽  
Author(s):  
George Dincă ◽  
Petru Jebelean ◽  
Dumitru Motreanu

This paper is concerned with existence results for inequality problems of typeF0(u;v)+Ψ′(u;v)≥0, for allv∈X, whereXis a Banach space,F:X→ℝis locally Lipschitz, andΨ:X→(−∞+∞]is proper, convex, and lower semicontinuous. HereF0stands for the generalized directional derivative ofFandΨ′denotes the directional derivative ofΨ. The applications we consider focus on the variational-hemivariational inequalities involving thep-Laplacian operator.


Author(s):  
Dongni Tan ◽  
Xujian Huang

Abstract We say that a map $f$ from a Banach space $X$ to another Banach space $Y$ is a phase-isometry if the equality \[ \{\|f(x)+f(y)\|, \|f(x)-f(y)\|\}=\{\|x+y\|, \|x-y\|\} \] holds for all $x,\,y\in X$ . A Banach space $X$ is said to have the Wigner property if for any Banach space $Y$ and every surjective phase-isometry $f : X\rightarrow Y$ , there exists a phase function $\varepsilon : X \rightarrow \{-1,\,1\}$ such that $\varepsilon \cdot f$ is a linear isometry. We present some basic properties of phase-isometries between two real Banach spaces. These enable us to show that all finite-dimensional polyhedral Banach spaces and CL-spaces possess the Wigner property.


2010 ◽  
Vol 148 (3) ◽  
pp. 519-529 ◽  
Author(s):  
S. J. DILWORTH ◽  
E. ODELL ◽  
TH. SCHLUMPRECHT ◽  
ANDRÁS ZSÁK

AbstractWe consider the X-Greedy Algorithm and the Dual Greedy Algorithm in a finite-dimensional Banach space with a strictly monotone basis as the dictionary. We show that when the dictionary is an initial segment of the Haar basis in Lp[0, 1] (1 < p < ∞) then the algorithms terminate after finitely many iterations and that the number of iterations is bounded by a function of the length of the initial segment. We also prove a more general result for a class of strictly monotone bases.


2015 ◽  
Vol 17 (1) ◽  
pp. 39-57 ◽  
Author(s):  
Raf Cluckers ◽  
Florent Martin

A direct application of Zorn’s lemma gives that every Lipschitz map $f:X\subset \mathbb{Q}_{p}^{n}\rightarrow \mathbb{Q}_{p}^{\ell }$ has an extension to a Lipschitz map $\widetilde{f}:\mathbb{Q}_{p}^{n}\rightarrow \mathbb{Q}_{p}^{\ell }$. This is analogous to, but easier than, Kirszbraun’s theorem about the existence of Lipschitz extensions of Lipschitz maps $S\subset \mathbb{R}^{n}\rightarrow \mathbb{R}^{\ell }$. Recently, Fischer and Aschenbrenner obtained a definable version of Kirszbraun’s theorem. In this paper, we prove in the $p$-adic context that $\widetilde{f}$ can be taken definable when $f$ is definable, where definable means semi-algebraic or subanalytic (or some intermediary notion). We proceed by proving the existence of definable Lipschitz retractions of $\mathbb{Q}_{p}^{n}$ to the topological closure of $X$ when $X$ is definable.


2019 ◽  
Vol 62 (1) ◽  
pp. 71-74
Author(s):  
Tadeusz Figiel ◽  
William Johnson

AbstractA precise quantitative version of the following qualitative statement is proved: If a finite-dimensional normed space contains approximately Euclidean subspaces of all proportional dimensions, then every proportional dimensional quotient space has the same property.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2346
Author(s):  
Almudena Campos-Jiménez ◽  
Francisco Javier García-Pacheco

In this paper we provide new geometric invariants of surjective isometries between unit spheres of Banach spaces. Let X,Y be Banach spaces and let T:SX→SY be a surjective isometry. The most relevant geometric invariants under surjective isometries such as T are known to be the starlike sets, the maximal faces of the unit ball, and the antipodal points (in the finite-dimensional case). Here, new geometric invariants are found, such as almost flat sets, flat sets, starlike compatible sets, and starlike generated sets. Also, in this work, it is proved that if F is a maximal face of the unit ball containing inner points, then T(−F)=−T(F). We also show that if [x,y] is a non-trivial segment contained in the unit sphere such that T([x,y]) is convex, then T is affine on [x,y]. As a consequence, T is affine on every segment that is a maximal face. On the other hand, we introduce a new geometric property called property P, which states that every face of the unit ball is the intersection of all maximal faces containing it. This property has turned out to be, in a implicit way, a very useful tool to show that many Banach spaces enjoy the Mazur-Ulam property. Following this line, in this manuscript it is proved that every reflexive or separable Banach space with dimension greater than or equal to 2 can be equivalently renormed to fail property P.


Sign in / Sign up

Export Citation Format

Share Document