scholarly journals SmartLOC

Author(s):  
Yi Ding ◽  
Dongzhe Jiang ◽  
Yunhuai Liu ◽  
Desheng Zhang ◽  
Tian He

On-demand delivery is a rapidly developing business worldwide, where meals and groceries are delivered door to door from merchants to customers by the couriers. Couriers' real-time localization plays a key role in on-demand delivery for all parties like the platform's order dispatching, merchants' order preparing, couriers' navigation, and customers' shopping experience. Although GPS has well solved outdoor localization, indoor localization is still challenging due to the lack of large-coverage, low-cost anchors. Given the high penetration of smartphones in merchants and frequent rendezvous between merchants and couriers, we employ merchants' smartphones as indoor anchors for a new sensing opportunity. In this paper, we design, implement and evaluate SmartLOC, a map-free localization system that employs merchants' smartphones as anchors to obtain couriers' real-time locations. Specifically, we design a rendezvous detection module based on Bluetooth Low Energy (BLE), build indoor shop graphs for each mall, and adopt graph embedding to extract indoor shops' topology. To guarantee anchors' accuracy and privacy, we build a mutual localization module to iteratively infer merchants' state (in-shop or not) and couriers' locations with transformer models. We implement SmartLOC in a large on-demand delivery platform and deploy the system in 566 malls in Shanghai, China. We evaluate SmartLOC in two multi-floor malls in Shanghai and show that it can improve the accuracy of couriers' travel time estimation by 24%, 43%, 70%, and 76% compared with a straightforward graph solution, GPS, Wi-Fi, and TransLoc.

Author(s):  
Wen Zhang ◽  
Yang Wang ◽  
Xike Xie ◽  
Chuancai Ge ◽  
Hengchang Liu

2021 ◽  
Vol 2078 (1) ◽  
pp. 012070
Author(s):  
Qianrong Zhang ◽  
Yi Li

Abstract Ultra-wideband (UWB) has broad application prospects in the field of indoor localization. In order to make up for the shortcomings of ultra-wideband that is easily affected by the environment, a positioning method based on the fusion of infrared vision and ultra-wideband is proposed. Infrared vision assists locating by identifying artificial landmarks attached to the ceiling. UWB uses an adaptive weight positioning algorithm to improve the positioning accuracy of the edge of the UWB positioning coverage area. Extended Kalman filter (EKF) is used to fuse the real-time location information of the two. Finally, the intelligent mobile vehicle-mounted platform is used to collect infrared images and UWB ranging information in the indoor environment to verify the fusion method. Experimental results show that the fusion positioning method is better than any positioning method, has the advantages of low cost, real-time performance, and robustness, and can achieve centimeter-level positioning accuracy.


2017 ◽  
Vol 17 (02) ◽  
pp. e20 ◽  
Author(s):  
Kevin E. Soulier ◽  
Matías Nicolás Selzer ◽  
Martín Leonardo Larrea

In recent years, Augmented Reality has become a very popular topic, both as a research and commercial field. This trend has originated with the use of mobile devices as computational core and display. The appearance of virtual objects and their interaction with the real world is a key element in the success of an Augmented Reality software. A common issue in this type of software is the visual inconsistency between the virtual and real objects due to wrong illumination. Although illumination is a common research topic in Computer Graphics, few studies have been made about real time estimation of illumination direction. In this work we present a low-cost approach to detect the direction of the environment illumination, allowing the illumination of virtual objects according to the real light of the ambient, improving the integration of the scene. Our solution is open-source, based on Arduino hardware and the presented system was developed on Android.


Author(s):  
S. Karnouskos

An old saying coming from the telecom world states that nothing can be really considered as a service unless you are able to charge for it. As we move towards a service-oriented society, the necessity to pay in real time for a variety of services via different channels anywhere, anytime, in any currency increases. According to Gartner (www.gartner.com), worldwide mobile phone sales totaled 816.6 million units in 2005, a 21% increase from 2004. Due to the high penetration rates of the mobile devices, they pose an interesting candidate for the real-time payment scenarios. Several efforts have already been done (Karnouskos, 2004), but as new technology comes aboard, new capabilities are also brought along. Near Field Communication (NFC) is such a technology, which due to the industry support and its low cost (in comparison with similar ones) may become dominant in short-range communication among a variety of devices, including mobile phones. NFC is well equipped in order to facilitate mobile payments with little interference from the user side.


Sign in / Sign up

Export Citation Format

Share Document