A Method and Realization of On-orbit Temperature Phase Compensation for GEOSAR System

2021 ◽  
Author(s):  
Juan Sun ◽  
Guangting Li ◽  
Bin Liu ◽  
Baohua Sun ◽  
Gang Li ◽  
...  
Author(s):  
Naoki Yamamoto ◽  
Makoto Kikuchi ◽  
Tooru Atake ◽  
Akihiro Hamano ◽  
Yasutoshi Saito

BaZnGeO4 undergoes many phase transitions from I to V phase. The highest temperature phase I has a BaAl2O4 type structure with a hexagonal lattice. Recent X-ray diffraction study showed that the incommensurate (IC) lattice modulation appears along the c axis in the III and IV phases with a period of about 4c, and a commensurate (C) phase with a modulated period of 4c exists between the III and IV phases in the narrow temperature region (—58°C to —47°C on cooling), called the III' phase. The modulations in the IC phases are considered displacive type, but the detailed structures have not been studied. It is also not clear whether the modulation changes into periodic arrays of discommensurations (DC’s) near the III-III' and IV-V phase transition temperature as found in the ferroelectric materials such as Rb2ZnCl4.At room temperature (III phase) satellite reflections were seen around the fundamental reflections in a diffraction pattern (Fig.1) and they aligned along a certain direction deviated from the c* direction, which indicates that the modulation wave vector q tilts from the c* axis. The tilt angle is about 2 degree at room temperature and depends on temperature.


Author(s):  
Masaru Itakura ◽  
Noriyuki Kuwano ◽  
Kensuke Oki

The low temperature phase of Pd5Ce (L-Pd5Ce) has a one-dimensional long period superstructure (1D-LPS) derived from Ll2. The periodic antiphase boundaries (APBs) are parallel to (110) planes and have a shift vector of 1/2[110]. Hereafter, the indices are referred to the basic lattices of Ll2 As insertion of the APB causes a change in composition, such an APB is called “non-conservative”. Then, a domain size M depends upon the Ce concentration in the alloy. It was found that M increases also with temperature. The temperature dependency of M is attributed to a change of the degree of order within the antiphase domains. In this work, morphology of the non-conservative APBs is observed to clarify the formation process of the 1D-LPS.The alloy of Pd-16.7 at%Ce was prepared by arc melting in argon atmosphere. Disc specimens made from the alloy ingot were first held at 985 K for 260 ks and quenched in iced water to obtain the state of M=∞ or Ll2, followed by annealing for various lengths of time. The annealing temperature was 873 K where the equilibrium value for M is about 3 in unit of (110) lattice spacing of Ll2. Observation was carried out using microscopes JEM-2000FX, JEM-4000EX (HVEM Lab., Kyushu Univ.) and JEM-2000EX (Dept. of Mater. Sci. Tech., Kyushu Univ.).


Author(s):  
J.P.S. Hanjra

Tin mono selenide (SnSe) with an energy gap of about 1 eV is a potential material for photovoltaic applications. Various authors have studied the structure, electronic and photoelectronic properties of thin films of SnSe grown by various deposition techniques. However, for practical photovoltaic junctions the electrical properties of SnSe films need improvement. We have carried out investigations into the properties of flash evaporated SnSe films. In this paper we report our results on the structure, which plays a dominant role on the electrical properties of thin films by TEM, SEM, and electron diffraction (ED).Thin films of SnSe were deposited by flash evaporation of SnSe fine powder prepared from high purity Sn and Se, onto glass, mica and KCl substrates in a vacuum of 2Ø micro Torr. A 15% HF + 2Ø% HNO3 solution was used to detach SnSe film from the glass and mica substrates whereas the film deposited on KCl substrate was floated over an ethanol water mixture by dissolution of KCl. The floating films were picked up on the grids for their EM analysis.


1995 ◽  
Vol 5 (7) ◽  
pp. 763-769 ◽  
Author(s):  
S. Rios ◽  
W. Paulus ◽  
A. Cousson ◽  
M. Quilichini ◽  
G. Heger ◽  
...  

1981 ◽  
Vol 42 (C6) ◽  
pp. C6-599-C6-601 ◽  
Author(s):  
T. Wasiutynski ◽  
I. Natkaniec ◽  
A. I. Belushkin

Sign in / Sign up

Export Citation Format

Share Document