Genomics-Informed Insights into Endosymbiotic Organelle Evolution in Photosynthetic Eukaryotes

2018 ◽  
Vol 69 (1) ◽  
pp. 51-84 ◽  
Author(s):  
Eva C.M. Nowack ◽  
Andreas P.M. Weber
2021 ◽  
Author(s):  
Julia Duerschlag ◽  
Wiebke Mohr ◽  
Timothy G. Ferdelman ◽  
Julie LaRoche ◽  
Dhwani Desai ◽  
...  

AbstractOligotrophic ocean gyre ecosystems may be expanding due to rising global temperatures [1–5]. Models predicting carbon flow through these changing ecosystems require accurate descriptions of phytoplankton communities and their metabolic activities [6]. We therefore measured distributions and activities of cyanobacteria and small photosynthetic eukaryotes throughout the euphotic zone on a zonal transect through the South Pacific Ocean, focusing on the ultraoligotrophic waters of the South Pacific Gyre (SPG). Bulk rates of CO2 fixation were low (0.1 µmol C l−1 d−1) but pervasive throughout both the surface mixed-layer (upper 150 m), as well as the deep chlorophyll a maximum of the core SPG. Chloroplast 16S rRNA metabarcoding, and single-cell 13CO2 uptake experiments demonstrated niche differentiation among the small eukaryotes and picocyanobacteria. Prochlorococcus abundances, activity, and growth were more closely associated with the rims of the gyre. Small, fast-growing, photosynthetic eukaryotes, likely related to the Pelagophyceae, characterized the deep chlorophyll a maximum. In contrast, a slower growing population of photosynthetic eukaryotes, likely comprised of Dictyochophyceae and Chrysophyceae, dominated the mixed layer that contributed 65–88% of the areal CO2 fixation within the core SPG. Small photosynthetic eukaryotes may thus play an underappreciated role in CO2 fixation in the surface mixed-layer waters of ultraoligotrophic ecosystems.


Author(s):  
Duckhyun Lhee ◽  
JunMo Lee ◽  
Khaoula Ettahi ◽  
Chung Hyun Cho ◽  
Ji-San Ha ◽  
...  

Abstract Eukaryotic photosynthetic organelles, plastids, are the powerhouses of many aquatic and terrestrial ecosystems. The canonical plastid in algae and plants originated >1 billion years ago and therefore offers limited insights into the initial stages of organelle evolution. To address this issue, we focus here on the photosynthetic amoeba Paulinella micropora strain KR01 (hereafter, KR01) that underwent a more recent (ca. 124 Mya) primary endosymbiosis, resulting in a photosynthetic organelle termed the chromatophore. Analysis of genomic and transcriptomic data resulted in a high-quality draft assembly of size 707 Mbp and 32,361 predicted gene models. A total of 291 chromatophore targeted proteins were predicted in silico, 206 of which comprise the ancestral organelle proteome in photosynthetic Paulinella species with functions, among others, in nucleotide metabolism and oxidative stress response. Gene co-expression analysis identified networks containing known high light stress response genes as well as a variety of genes of unknown function (“dark” genes). We characterized diurnally rhythmic genes in this species and found that over 51% are dark. It was recently hypothesized that large double-stranded DNA viruses may have driven gene transfer to the nucleus in Paulinella and facilitated endosymbiosis. Our analyses do not support this idea, but rather suggest that these viruses in the KR01 and closely related P. micropora MYN1 genomes resulted from a more recent invasion.


2017 ◽  
Vol 114 (50) ◽  
pp. E10608-E10609 ◽  
Author(s):  
Patricia Sánchez-Baracaldo ◽  
Giorgio Bianchini ◽  
John P. Huelsenbeck ◽  
John A. Raven ◽  
Davide Pisani ◽  
...  

2005 ◽  
Vol 15 (14) ◽  
pp. 1325-1330 ◽  
Author(s):  
Naiara Rodríguez-Ezpeleta ◽  
Henner Brinkmann ◽  
Suzanne C. Burey ◽  
Béatrice Roure ◽  
Gertraud Burger ◽  
...  

2004 ◽  
Vol 186 (11) ◽  
pp. 3346-3354 ◽  
Author(s):  
Sergio Burillo ◽  
Ignacio Luque ◽  
Inmaculada Fuentes ◽  
Asunción Contreras

ABSTRACT PII, one of the most conserved signal transduction proteins, is believed to be a key player in the coordination of nitrogen assimilation and carbon metabolism in bacteria, archaea, and plants. However, the identity of PII receptors remains elusive, particularly in photosynthetic organisms. Here we used yeast two-hybrid approaches to identify new PII receptors and to explore the extent of conservation of PII signaling mechanisms between eubacteria and photosynthetic eukaryotes. Screening of Synechococcus sp. strain PCC 7942 libraries with PII as bait resulted in identification of N-acetyl glutamate kinase (NAGK), a key enzyme in the biosynthesis of arginine. The integrity of Ser49, a residue conserved in PII proteins from organisms that perform oxygenic photosynthesis, appears to be essential for NAGK binding. The effect of glnB mutations on NAGK activity is consistent with positive regulation of NAGK by PII. Phylogenetic and yeast two-hybrid analyses strongly suggest that there was conservation of the NAGK-PII regulatory interaction in the evolution of cyanobacteria and chloroplasts, providing insight into the function of eukaryotic PII-like proteins.


Sign in / Sign up

Export Citation Format

Share Document