Unlocking Personalized Biomedicine and Drug Discovery with Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes: Fit for Purpose or Forever Elusive?

2020 ◽  
Vol 60 (1) ◽  
pp. 529-551 ◽  
Author(s):  
Tessa de Korte ◽  
Puspita A. Katili ◽  
Nurul A.N. Mohd Yusof ◽  
Berend J. van Meer ◽  
Umber Saleem ◽  
...  

In recent decades, drug development costs have increased by approximately a hundredfold, and yet about 1 in 7 licensed drugs are withdrawn from the market, often due to cardiotoxicity. This review considers whether technologies using human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) could complement existing assays to improve discovery and safety while reducing socioeconomic costs and assisting with regulatory guidelines on cardiac safety assessments. We draw on lessons from our own work to suggest a panel of 12 drugs that will be useful in testing the suitability of hiPSC-CM platforms to evaluate contractility. We review issues, including maturity versus complexity, consistency, quality, and cost, while considering a potential need to incorporate auxiliary approaches to compensate for limitations in hiPSC-CM technology. We give examples on how coupling hiPSC-CM technologies with Cas9/CRISPR genome engineering is starting to be used to personalize diagnosis, stratify risk, provide mechanistic insights, and identify new pathogenic variants for cardiovascular disease.

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Abdelwahab Jalal Eldin ◽  
Baris Akinci ◽  
Andre Monteiro da Rocha ◽  
Rasimcan Meral ◽  
Ilgin Yildirim Simsir ◽  
...  

Abstract Background Pathogenic variants in Lamin A/C (LMNA) gene are the most common monogenic etiology in Familial Partial Lipodystrophy (FPLD) causing FPLD2. LMNA pathogenic variants have been previously associated with cardiomyopathy, familial arrhythmias or conduction system abnormalities independent of lipodystrophy. We aimed to assess cardiac impacts of FPLD, and to explore the extent of overlap between cardiolaminopathies and FPLD. Methods We conducted a retrospective review of an established cohort of 122 patients (age range: 13-77, M/F 21/101) with FPLD from Michigan (n = 83) and Turkey (n = 39) with an accessible cardiac evaluation. Also, functional syncytia of mature human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from a FLPD2 patient was studied for assessment of autonomous rhythm and action potential duration with optical mapping using a voltage sensitive dye. Results In the whole study cohort, 95 (78%) patients had cardiac alterations (25% ischemic heart disease, 36% arrhythmia, 16% conduction abnormality, 20% prolonged QT interval, 11% cardiomyopathy, and 15% congestive heart failure). The likelihood of having an arrhythmia (OR; 3.95, 95% CI: 1.49-10.49) and conduction disease (OR: 3.324, 95% CI: 1.33-8.31) was significantly higher in patients with LMNA pathogenic variants. Patients with LMNA pathogenic variants were at high risk for atrial fibrillation/flutter (OR: 6.77, 95% CI: 1.27- 39.18). The time to first arrhythmia was significantly shorter in the LMNA group with a higher hazard rate of 3.04 (95% CI: 1.29-7.17, p = 0.032). Non-482 LMNA pathogenic variants were more likely to be associated with cardiac events (vs. 482 LMNA: OR: 4.74, 95% CI: 1.41- 15.98 for arrhythmia; OR: 17.67, 95% CI: 2.44- 127.68 for atrial fibrillation/flutter; OR: 5.71, 95% CI: 1.37- 23.76 for conduction disease. hiPSC-CMs from a FPLD2 patient had higher frequency of autonomous activity, and shorter Fridericia corrected action potential duration at 80% repolarization compared to control cardiomyocytes. Furthermore, FPLD2 functional syncytia of mature hiPSC-CMs presented several rhythm alterations such as early after-depolarizations, spontaneous quiescence and spontaneous tachyarrhythmia; none of those were observed in the control cell lines. Finally, FPLD2 hiPSC-CMs presented significantly slower recovery in chronotropic changes induced by isoproterenol exposure; which indicates disrupted beta-adrenergic response. Conclusion Our results suggest the need for vigilant cardiac monitoring in FPLD, especially in patients with FPLD2 who have an increased risk to develop cardiac arrhythmias and conduction system diseases. In addition, study of human induced pluripotent stem cell-derived cardiomyocytes may prove useful to understand the mechanism of cardiac disease and arrhythmias and to create precision therapy opportunities in the future.


Circulation ◽  
2020 ◽  
Vol 142 (23) ◽  
pp. 2262-2275
Author(s):  
Anthony M. Pettinato ◽  
Feria A. Ladha ◽  
David J. Mellert ◽  
Nicholas Legere ◽  
Rachel Cohn ◽  
...  

Background: Pathogenic TNNT2 variants are a cause of hypertrophic and dilated cardiomyopathies, which promote heart failure by incompletely understood mechanisms. The precise functional significance for 87% of TNNT2 variants remains undetermined, in part, because of a lack of functional genomics studies. The knowledge of which and how TNNT2 variants cause hypertrophic and dilated cardiomyopathies could improve heart failure risk determination, treatment efficacy, and therapeutic discovery, and provide new insights into cardiomyopathy pathogenesis, as well. Methods: We created a toolkit of human induced pluripotent stem cell models and functional assays using CRISPR/Cas9 to study TNNT2 variant pathogenicity and pathophysiology. Using human induced pluripotent stem cell–derived cardiomyocytes in cardiac microtissue and single-cell assays, we functionally interrogated 51 TNNT2 variants, including 30 pathogenic/likely pathogenic variants and 21 variants of uncertain significance. We used RNA sequencing to determine the transcriptomic consequences of pathogenic TNNT2 variants and adapted CRISPR/Cas9 to engineer a transcriptional reporter assay to assist prediction of TNNT2 variant pathogenicity. We also studied variant-specific pathophysiology using a thin filament–directed calcium reporter to monitor changes in myofilament calcium affinity. Results: Hypertrophic cardiomyopathy–associated TNNT2 variants caused increased cardiac microtissue contraction, whereas dilated cardiomyopathy–associated variants decreased contraction. TNNT2 variant–dependent changes in sarcomere contractile function induced graded regulation of 101 gene transcripts, including MAPK (mitogen-activated protein kinase) signaling targets, HOPX , and NPPB . We distinguished pathogenic TNNT2 variants from wildtype controls using a sarcomere functional reporter engineered by inserting tdTomato into the endogenous NPPB locus. On the basis of a combination of NPPB reporter activity and cardiac microtissue contraction, our study provides experimental support for the reclassification of 2 pathogenic/likely pathogenic variants and 2 variants of uncertain significance. Conclusions: Our study found that hypertrophic cardiomyopathy–associated TNNT2 variants increased cardiac microtissue contraction, whereas dilated cardiomyopathy–associated variants decreased contraction, both of which paralleled changes in myofilament calcium affinity. Transcriptomic changes, including NPPB levels, directly correlated with sarcomere function and can be used to predict TNNT2 variant pathogenicity.


2018 ◽  
Author(s):  
Fantuzzi Federica ◽  
Toivonen Sanna ◽  
Schiavo Andrea Alex ◽  
Pachera Nathalie ◽  
Rajaei Bahareh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document