scholarly journals Coastal Impacts Due to Sea-Level Rise

2008 ◽  
Vol 36 (1) ◽  
pp. 601-647 ◽  
Author(s):  
Duncan M. FitzGerald ◽  
Michael S. Fenster ◽  
Britt A. Argow ◽  
Ilya V. Buynevich
2014 ◽  
Vol 2 (2) ◽  
pp. 15-34 ◽  
Author(s):  
Anny Cazenave ◽  
Gonéri Le Cozannet

2020 ◽  
Author(s):  
Marta Marcos ◽  
Angel Amores

<p>For how long low-elevation coastal areas will be habitable under the effects of mean sea-level rise and marine extreme hazards? Mean sea-level rise, despite having a global origin, has severe local coastal impacts, as it raises the baseline level on top of which extreme storm surges and wind-waves reach the coastlines and, consequently, increases coastal exposure. In this presentation we will show coastal modelling exercises, fed with regionalised climate information of mean sea level and marine extremes, and applied in different environments that include sandy beaches and atoll islands. The outputs are aimed at anticipating the potential impacts of the dominant drivers in terms of land loss, coastal flooding and erosion. Our examples will be focusing on islands, for which the effects of increased coastal exposure are relatively larger, where local economy is often linked to coastal activities and retreat and migration are hampered by the limited land availability.</p>


2021 ◽  
Author(s):  
Goneri Le Cozannet ◽  
Jeremy Rohmer ◽  
Jean-Charles Manceau ◽  
Gael Durand ◽  
Catherine Ritz ◽  
...  

<p>Coastal impacts of climate change and the related mitigation and adaptation needs requires assessments of future sea-level changes. Following a common practice in coastal engineering, probabilistic sea-level projections have been proposed for at least 20 years. This requires a probability model to represent the uncertainties of future sea-level rise, which is not achievable because potential ice sheets mass losses remain poorly understood given the knowledge available today. Here, we apply the principles of extra-probabilistic theories of uncertainties to generate global and regional sea-level projections based on uncertain components. This approach assigns an imprecision to a probabilistic measure, in order to quantify lack of knowledge pertaining to probabilistic projections. This can serve to understand, analyze and communicate uncertainties due to the coexistence of different processes contributing to future sea-level rise, including ice-sheets. We show that the knowledge gained since the 5th Assessment report of the IPCC allows better quantification of how global and regional sea-level rise uncertainties can be reduced with lower greenhouse gas emissions. Furthermore, Europe and Northern America are among those profiting most from a policy limiting climate change to RCP 2.6 versus RCP 4.5 in terms of reducing uncertainties of sea-level rise.</p>


2019 ◽  
Vol 6 ◽  
Author(s):  
Andrés F. Orejarena-Rondón ◽  
Juan M. Sayol ◽  
Marta Marcos ◽  
Luis Otero ◽  
Juan C. Restrepo ◽  
...  

2018 ◽  
Vol 177 ◽  
pp. 01017
Author(s):  
Zainul Hidayah ◽  
Luhur Mukti Prayogo ◽  
Maulinna Kusumo Wardhani

Coastal regions and small islands are areas that will be adversely affected by the phenomenon of sea level rise globally. In general, Sea Level Rise (SLR) will result in coastal impacts as follows: increased frequency and intensity of floods, changes in ocean currents and widespread intrusion of sea water. This research was conducted in Gili Raja Island of Sumenep Madura. Objectives of this research were to demonstrate the ability of combining remote sensing and GIS method to determine the impact of SLR on a small island and to model its scale using different scenario. GIS based run-up model were performed to estimate and predict the impact of SLR to the island’s area. Three water level scenario (0.5 m, 1.0 m and 1.5 m) were applied. The results showed that in the first scenario 8.73% of the island was flooded by sea water, furthermore in two other scenario the flooded area was increase significantly (15.88% and 22.38%).


Eos ◽  
2020 ◽  
Vol 101 ◽  
Author(s):  
Kate Wheeling

Researchers identify the main sources of uncertainty in projections of global glacier mass change, which is expected to add about 8–16 centimeters to sea level, through this century.


Sign in / Sign up

Export Citation Format

Share Document