Impacts of mean sea-level rise and marine extremes on islands

Author(s):  
Marta Marcos ◽  
Angel Amores

<p>For how long low-elevation coastal areas will be habitable under the effects of mean sea-level rise and marine extreme hazards? Mean sea-level rise, despite having a global origin, has severe local coastal impacts, as it raises the baseline level on top of which extreme storm surges and wind-waves reach the coastlines and, consequently, increases coastal exposure. In this presentation we will show coastal modelling exercises, fed with regionalised climate information of mean sea level and marine extremes, and applied in different environments that include sandy beaches and atoll islands. The outputs are aimed at anticipating the potential impacts of the dominant drivers in terms of land loss, coastal flooding and erosion. Our examples will be focusing on islands, for which the effects of increased coastal exposure are relatively larger, where local economy is often linked to coastal activities and retreat and migration are hampered by the limited land availability.</p>

2021 ◽  
Vol 8 ◽  
Author(s):  
Pau Luque ◽  
Lluís Gómez-Pujol ◽  
Marta Marcos ◽  
Alejandro Orfila

Sea-level rise induces a permanent loss of land with widespread ecological and economic impacts, most evident in urban and densely populated areas. Potential coastline retreat combined with waves and storm surges will result in more severe damages for coastal zones, especially over insular systems. In this paper, we quantify the effects of sea-level rise in terms of potential coastal flooding and potential beach erosion, along the coasts of the Balearic Islands (Western Mediterranean Sea), during the twenty-first century. We map projected flooded areas under two climate-change-driven mean sea-level rise scenarios (RCP4.5 and RCP8.5), together with the impact of an extreme event defined by the 100-year return level of joint storm surges and waves. We quantify shoreline retreat of sandy beaches forced by the sea-level rise (scenarios RCP4.5 and RCP8.5) and the continuous action of storm surges and waves (modeled by synthetic time series). We estimate touristic recreational services decrease of sandy beaches caused by the obtained shoreline retreat, in monetary terms. According to our calculations, permanent flooding by the end of our century will extend 7.8–27.7 km2 under the RCP4.5 scenario (mean sea-level rise between 32 and 80 cm by 2100), and up to 10.9–36.5 km2 under RCP8.5 (mean sea-level rise between 46 and 103 cm by 2100). Some beaches will lose more than 50% of their surface by the end of the century: 20–50% of them under RCP4.5 scenario and 25–60% under RCP8.5 one. Loss of touristic recreational services could represent a gross domestic product (GDP) loss up to 7.2% with respect to the 2019 GDP.


2020 ◽  
Author(s):  
Pau Luque Lozano ◽  
Lluís Gómez-Pujol ◽  
Marta Marcos ◽  
Alejandro Orfila

<p>Sea-level rise induces a permanent loss of land with widespread ecological and economic impacts, most evident in urban and densely populated areas. The eventual coastline retreat combined with the action of waves and storm surges will end in more severe damages over coastal areas. These effects are expected to be particularly significant over islands, where coastal zones represent a relatively larger area vulnerable to marine hazards.</p><p>Managing coastal flood risk at regional scales requires a prioritization of resources and socioeconomic activities along the coast. Stakeholders, such as regional authorities, coastal managers and private companies, need tools that help to address the evaluation of coastal risks and criteria to support decision-makers to clarify priorities and critical sites. For this reason, the regional Government of the Balearic Islands (Spain) in association with the Spanish Ministry of Agriculture, Fisheries and Environment has launched the Plan for Climate Change Coastal Adaptation. This framework integrates two levels of analysis. The first one relates with the identification of critical areas affected by coastal flooding and erosion under mean sea-level rise scenarios and the quantification of the extent of flooding, including marine extreme events. The second level assesses the impacts on infrastructures and assets from a socioeconomic perspective due to these hazards.</p><p>In this context, this paper quantifies the effects of sea-level rise and marine extreme events caused by storm surges and waves along the coasts of the Balearic Islands (Western Mediterranean Sea) in terms of coastal flooding and potential erosion. Given the regional scale (~1500 km) of this study, the presented methodology adopts a compromise between accuracy, physical representativity and computational costs. We map the projected flooded coastal areas under two mean sea-level rise climate change scenarios, RCP4.5 and RCP8.5. To do so, we apply a corrected bathtub algorithm. Additionally, we compute the impact of extreme storm surges and waves using two 35-year hindcasts consistently forced by mean sea level pressure and surface winds from ERA-Interim reanalysis. Waves have been further propagated towards the nearshore to compute wave setup with higher accuracy. The 100-year return levels of joint storm surges and waves are used to map the spatial extent of flooding in more than 200 sandy beaches around the Balearic Islands by mid and late 21st century, using the hydrodynamical LISFLOOD-FP model and a high resolution (2 m) Digital Elevation Model.</p>


2021 ◽  
Vol 8 ◽  
Author(s):  
Angel Amores ◽  
Marta Marcos ◽  
Rodrigo Pedreros ◽  
Gonéri Le Cozannet ◽  
Sophie Lecacheux ◽  
...  

The Maldives, with one of the lowest average land elevations above present-day mean sea level, is among the world regions that will be the most impacted by mean sea-level rise and marine extreme events induced by climate change. Yet, the lack of regional and local information on marine drivers is a major drawback that coastal decision-makers face to anticipate the impacts of climate change along the Maldivian coastlines. In this study we focus on wind-waves, the main driver of extremes causing coastal flooding in the region. We dynamically downscale large-scale fields from global wave models, providing a valuable source of climate information along the coastlines with spatial resolution down to 500 m. This dataset serves to characterise the wave climate around the Maldives, with applications in regional development and land reclamation, and is also an essential input for local flood hazard modelling. We illustrate this with a case study of HA Hoarafushi, an atoll island where local topo-bathymetry is available. This island is exposed to the highest incoming waves in the archipelago and recently saw development of an airport island on its reef via land reclamation. Regional waves are propagated toward the shoreline using a phase-resolving model and coastal inundation is simulated under different mean sea-level rise conditions of up to 1 m above present-day mean sea level. The results are represented as risk maps with different hazard levels gathering inundation depth and speed, providing a clear evidence of the impacts of the sea level rise combined with extreme wave events.


2019 ◽  
Author(s):  
Amir Hossein Mahdavi ◽  
Hamid Ansari Sharghi

Storm surge is generated by the integration of waves, tide and wind setup that is resulted in unwanted mean sea level rise and coastal flooding. The estimation of accurate storm surge is essential for the engineering design of coastal structures. In this study, we estimated the respond of mean sea level winds, tide, waves, and sea-level rise using a local coastal model. A fully coupled hydrodynamic and wave model was implemented to obtain storm surge from different phenomena. The simulations of water level fluctuations due to these parameters were analyzed with the wind forces identified with tidal observations in the Port of Kong. Extreme value analysis was performed to determine the fluctuations associated with different return periods. These data were combined by sea-level rise projections are combined with resulted value. The worst and best scenario of storm surges for each return period were determined for engineering design purposes.


2021 ◽  
Vol 21 (7) ◽  
pp. 2257-2276
Author(s):  
Rémi Thiéblemont ◽  
Gonéri Le Cozannet ◽  
Jérémy Rohmer ◽  
Alexandra Toimil ◽  
Moisés Álvarez-Cuesta ◽  
...  

Abstract. Global mean sea level rise and its acceleration are projected to aggravate coastal erosion over the 21st century, which constitutes a major challenge for coastal adaptation. Projections of shoreline retreat are highly uncertain, however, namely due to deeply uncertain mean sea level projections and the absence of consensus on a coastal impact model. An improved understanding and a better quantification of these sources of deep uncertainty are hence required to improve coastal risk management and inform adaptation decisions. In this work we present and apply a new extra-probabilistic framework to develop shoreline change projections of sandy coasts that allows consideration of intrinsic (or aleatory) and knowledge-based (or epistemic) uncertainties exhaustively and transparently. This framework builds upon an empirical shoreline change model to which we ascribe possibility functions to represent deeply uncertain variables. The model is applied to two local sites in Aquitaine (France) and Castellón (Spain). First, we validate the framework against historical shoreline observations and then develop shoreline change projections that account for possible (although unlikely) low-end and high-end mean sea level scenarios. Our high-end projections show for instance that shoreline retreats of up to 200 m in Aquitaine and 130 m in Castellón are plausible by 2100, while low-end projections revealed that 58 and 37 m modest shoreline retreats, respectively, are also plausible. Such extended intervals of possible future shoreline changes reflect an ambiguity in the probabilistic description of shoreline change projections, which could be substantially reduced by better constraining sea level rise (SLR) projections and improving coastal impact models. We found for instance that if mean sea level by 2100 does not exceed 1 m, the ambiguity can be reduced by more than 50 %. This could be achieved through an ambitious climate mitigation policy and improved knowledge on ice sheets.


2020 ◽  
Author(s):  
Piero Lionello ◽  
David Barriopedro ◽  
Christian Ferrarin ◽  
Robert J. Nicholls ◽  
Mirko Orlic ◽  
...  

Abstract. Floods in the Venice city centre result from the superposition of several factors: astronomical tides, seiches and atmospherically forced fluctuations, which include storm surges, meteotsunamis, and surges caused by planetary waves. All these factors can contribute to positive sea-level anomalies individually and can also result in extreme sea-level events when they act constructively. The largest extreme sea level events have been mostly caused by storm surges produced by the Sirocco winds. This leads to a characteristic seasonal cycle, with the largest and most frequent events occurring from November to March. Storm surges can be produced by cyclones whose centers are located either north or south of the Alps. The most intense historical events have been produced by cyclogenesis in the western Mediterranean, to the west of the main cyclogenetic area of the Mediterranean region in the Gulf of Genoa. Only a small fraction of the interannual variability of extreme sea levels is described by fluctuations in the dominant patterns of atmospheric circulation variability over the Euro-Atlantic sector. Therefore, decadal fluctuations of sea-level extremes remain largely unexplained. In particular, the effect of the 11-year solar cycle appears to be small, non-stationary or masked by other factors. The historic increase in the frequency of extreme sea levels since the mid 19th Century is explained by relative sea level rise, with no long term trend in the intensity of the atmospheric forcing. Analogously, future regional relative mean sea level rise will be the most important driver of increasing duration and intensity of Venice floods through this century, overwhelming the small decrease in marine storminess projected during the 21 century. Consequently, the future increase of extreme sea levels covers a large range, partly reflecting the highly uncertain mass contributions to future mean sea level rise from the melting of Antarctica and Greenland ice-sheets, especially towards the end of the century. In conclusion, for a high emission scenario the magnitude of 1-in-100 year sea level events at the North Adriatic coast is projected to increase up to 65 % and 160 % in 2050 and 2100, respectively, with respect to the present value, and subject to continued increase thereafter. Local subsidence can further contribute to the future increase of extreme sea levels. This analysis shows the need for adaptive planning of coastal defenses with solutions that can be adopted to face the large range of plausible future sea-level extremes.


2021 ◽  
Vol 21 (8) ◽  
pp. 2705-2731 ◽  
Author(s):  
Piero Lionello ◽  
David Barriopedro ◽  
Christian Ferrarin ◽  
Robert J. Nicholls ◽  
Mirko Orlić ◽  
...  

Abstract. Floods in the Venice city centre result from the superposition of several factors: astronomical tides; seiches; and atmospherically forced fluctuations, which include storm surges, meteotsunamis, and surges caused by atmospheric planetary waves. All these factors can contribute to positive water height anomalies individually and can increase the probability of extreme events when they act constructively. The largest extreme water heights are mostly caused by the storm surges produced by the sirocco winds, leading to a characteristic seasonal cycle, with the largest and most frequent events occurring from November to March. Storm surges can be produced by cyclones whose centres are located either north or south of the Alps. Historically, the most intense events have been produced by cyclogenesis in the western Mediterranean, to the west of the main cyclogenetic area of the Mediterranean region in the Gulf of Genoa. Only a small fraction of the inter-annual variability in extreme water heights is described by fluctuations in the dominant patterns of atmospheric circulation variability over the Euro-Atlantic sector. Therefore, decadal fluctuations in water height extremes remain largely unexplained. In particular, the effect of the 11-year solar cycle does not appear to be steadily present if more than 100 years of observations are considered. The historic increase in the frequency of floods since the mid-19th century is explained by relative mean sea level rise. Analogously, future regional relative mean sea level rise will be the most important driver of increasing duration and intensity of Venice floods through this century, overcompensating for the small projected decrease in marine storminess. The future increase in extreme water heights covers a wide range, largely reflecting the highly uncertain mass contributions to future mean sea level rise from the melting of Antarctica and Greenland ice sheets, especially towards the end of the century. For a high-emission scenario (RCP8.5), the magnitude of 1-in-100-year water height values at the northern Adriatic coast is projected to increase by 26–35 cm by 2050 and by 53–171 cm by 2100 with respect to the present value and is subject to continued increase thereafter. For a moderate-emission scenario (RCP4.5), these values are 12–17 cm by 2050 and 24–56 cm by 2100. Local subsidence (which is not included in these estimates) will further contribute to the future increase in extreme water heights. This analysis shows the need for adaptive long-term planning of coastal defences using flexible solutions that are appropriate across the large range of plausible future water height extremes.


Author(s):  
Vladimir Fomin ◽  
Vladimir Fomin ◽  
Dmitrii Alekseev ◽  
Dmitrii Alekseev ◽  
Dmitrii Lazorenko ◽  
...  

Storm surges and wind waves are ones of the most important hydrological characteristics, which determine dynamics of the Sea of Azov. Extreme storm surges in Taganrog Bay and flooding in the Don Delta can be formed under the effect of strong western winds. In this work the sea level oscillations and wind waves in the Taganrog Bay were simulated by means of the coupled SWAN+ADCIRC numerical model, taking into account the flooding and drying mechanisms. The calculations were carried out on an unstructured mesh with high resolution. The wind and atmospheric pressure fields for the extreme storm from 20 to 28 of September, 2014 obtained from WRF regional atmospheric model were used as forcing. The analysis of simulation results showed the following. The western and northern parts of the Don Delta were the most flood-prone during the storm. The size of the flooded area of the Don Delta exceeded 50%. Interaction of storm surge and wind wave accelerated the flooding process, increased the size of the flooded area and led to the intensification of wind waves in the upper of Taganrog Bay due to the general rise of the sea level.


2021 ◽  
Vol 9 (6) ◽  
pp. 595
Author(s):  
Américo Soares Ribeiro ◽  
Carina Lurdes Lopes ◽  
Magda Catarina Sousa ◽  
Moncho Gomez-Gesteira ◽  
João Miguel Dias

Ports constitute a significant influence in the economic activity in coastal areas through operations and infrastructures to facilitate land and maritime transport of cargo. Ports are located in a multi-dimensional environment facing ocean and river hazards. Higher warming scenarios indicate Europe’s ports will be exposed to higher risk due to the increase in extreme sea levels (ESL), a combination of the mean sea level, tide, and storm surge. Located on the west Iberia Peninsula, the Aveiro Port is located in a coastal lagoon exposed to ocean and river flows, contributing to higher flood risk. This study aims to assess the flood extent for Aveiro Port for historical (1979–2005), near future (2026–2045), and far future (2081–2099) periods scenarios considering different return periods (10, 25, and 100-year) for the flood drivers, through numerical simulations of the ESL, wave regime, and riverine flows simultaneously. Spatial maps considering the flood extent and calculated area show that most of the port infrastructures' resilience to flooding is found under the historical period, with some marginal floods. Under climate change impacts, the port flood extent gradually increases for higher return periods, where most of the terminals are at high risk of being flooded for the far-future period, whose contribution is primarily due to mean sea-level rise and storm surges.


Sign in / Sign up

Export Citation Format

Share Document