Quantifying ambiguity in sea-level projections

Author(s):  
Goneri Le Cozannet ◽  
Jeremy Rohmer ◽  
Jean-Charles Manceau ◽  
Gael Durand ◽  
Catherine Ritz ◽  
...  

<p>Coastal impacts of climate change and the related mitigation and adaptation needs requires assessments of future sea-level changes. Following a common practice in coastal engineering, probabilistic sea-level projections have been proposed for at least 20 years. This requires a probability model to represent the uncertainties of future sea-level rise, which is not achievable because potential ice sheets mass losses remain poorly understood given the knowledge available today. Here, we apply the principles of extra-probabilistic theories of uncertainties to generate global and regional sea-level projections based on uncertain components. This approach assigns an imprecision to a probabilistic measure, in order to quantify lack of knowledge pertaining to probabilistic projections. This can serve to understand, analyze and communicate uncertainties due to the coexistence of different processes contributing to future sea-level rise, including ice-sheets. We show that the knowledge gained since the 5th Assessment report of the IPCC allows better quantification of how global and regional sea-level rise uncertainties can be reduced with lower greenhouse gas emissions. Furthermore, Europe and Northern America are among those profiting most from a policy limiting climate change to RCP 2.6 versus RCP 4.5 in terms of reducing uncertainties of sea-level rise.</p>

2013 ◽  
Vol 4 (1) ◽  
pp. 11-29 ◽  
Author(s):  
M. Perrette ◽  
F. Landerer ◽  
R. Riva ◽  
K. Frieler ◽  
M. Meinshausen

Abstract. Climate change causes global mean sea level to rise due to thermal expansion of seawater and loss of land ice from mountain glaciers, ice caps and ice sheets. Locally, sea level can strongly deviate from the global mean rise due to changes in wind and ocean currents. In addition, gravitational adjustments redistribute seawater away from shrinking ice masses. However, the land ice contribution to sea level rise (SLR) remains very challenging to model, and comprehensive regional sea level projections, which include appropriate gravitational adjustments, are still a nascent field (Katsman et al., 2011; Slangen et al., 2011). Here, we present an alternative approach to derive regional sea level changes for a range of emission and land ice melt scenarios, combining probabilistic forecasts of a simple climate model (MAGICC6) with the new CMIP5 general circulation models. The contribution from ice sheets varies considerably depending on the assumptions for the ice sheet projections, and thus represents sizeable uncertainties for future sea level rise. However, several consistent and robust patterns emerge from our analysis: at low latitudes, especially in the Indian Ocean and Western Pacific, sea level will likely rise more than the global mean (mostly by 10–20%). Around the northeastern Atlantic and the northeastern Pacific coasts, sea level will rise less than the global average or, in some rare cases, even fall. In the northwestern Atlantic, along the American coast, a strong dynamic sea level rise is counteracted by gravitational depression due to Greenland ice melt; whether sea level will be above- or below-average will depend on the relative contribution of these two factors. Our regional sea level projections and the diagnosed uncertainties provide an improved basis for coastal impact analysis and infrastructure planning for adaptation to climate change.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jean-François Legeais ◽  
Benoît Meyssignac ◽  
Yannice Faugère ◽  
Adrien Guerou ◽  
Michaël Ablain ◽  
...  

It is essential to monitor accurately current sea level changes to better understand and project future sea level rise (SLR). This is the basis to support the design of adaptation strategies to climate change. Altimeter sea level products are operationally produced and distributed by the E.U. Copernicus services dedicated to the marine environment (CMEMS) and climate change (C3S). The present article is a review paper that intends to explain why and to which extent the sea level monitoring indicators derived from these products are appropriate to develop adaptation strategies to SLR. We first present the main key scientific questions and challenges related to SLR monitoring. The different processing steps of the altimeter production system are presented including those ensuring the quality and the stability of the sea level record (starting in 1993). Due to the numerous altimeter algorithms required for the production, it is complex to ensure both the retrieval of high-resolution mesoscale signals and the stability of the large-scale wavelengths. This has led to the operational production of two different sea level datasets whose specificities are characterized. We present the corresponding indicators: the global mean sea level (GMSL) evolution and the regional map of sea level trends, with their respective uncertainties. We discuss how these products and associated indicators support adaptation to SLR, and we illustrate with an example of downstream application. The remaining gaps are analyzed and recommendations for the future are provided.


Author(s):  
Karlina Triana ◽  
A'an Johan Wahyudi

Sea level changes play an important role as an indicator of climate change. However, without climate change, sea level itself shows strong regional patterns, both in space and time, that could deviate significantly from global averages. The spatial variability of sea level changes in Indonesia can be divided based on the drivers, i.e., climatic and seasonal weather-driven and non-climatic and geological-driven. Seasonally, sea level in Indonesia is generally high in northwest monsoon and low in southeast monsoon. Nevertheless, there is a possibility of extreme natural phenomenon influences that generate anomalies and thermosteric process that also affects the sea level. On the non-climatic and geological theory, the uniqueness of the tectonic setting in Indonesia will create spatial variation in regional sea levels both as static and dynamic changes in a long period of time. Land subsidence is also often regarded as a significant contributor to the rise of relative sea level in coastal environments. Combined with the rise of sea level, land subsidence will escalate the coastal flooding risk, contribute to shoreline retreat, and further aggravated by anthropogenic forces such as groundwater extraction and land development. This scientific review will summarize the spatial variation of sea level rise in Indonesia, examines the underlying drivers that control it, and provides an overview of combined sea level rise and land subsidence as a significant threat in Indonesia.


Author(s):  
Kirill Khvorostovsky ◽  
Pavel Lunev ◽  
Victoria Shterkhun

Formation and evolution of ice sheets is one of the “hot” problems of modern geosciences, as it has direct implication on the issues of climate change and sea level rise. Different methods of measurement or computing the mass balance of modern ice sheets based on various physical models sometimes give conflicting results. To understand them, one should first reconcile the models they are based on. This, in turn, requires one to decipher the vision different researchers have on the generation and evolution of ice sheets. This vision is initially qualitative. Hence, a qualitative model is desired that would reconcile various, and sometimes conflicting, physical models. This chapter proposes this model.


2000 ◽  
Vol 30 ◽  
pp. 197-203 ◽  
Author(s):  
Martin Wild ◽  
Atsumu Ohmura

AbstractFor projecting future sea level, the mass-balance changes on Greenland and Antarctica are considered to be crucial. Promising tools for such estimates are general circulation models (GCM). Until recently, a major impediment was their coarse grid resolution (3°-6°) causing substantial uncertainties in the mass-balance calculations of the poorly resolved ice sheets. The present study is based on a new climate-change experiment of the highest resolution currently feasible (1.1 °) performed with the ECHAM4 T106 GCM, thereby increasing confidence in the projected mass-balance and sea-level changes. This new experiment, with doubled CO2 concentration, suggests that the mass gain in Antarctica due to increased accumulation exceeds the melt-induced mass loss in Greenland by a factor of three. The resulting mass-balance change on both ice sheets is equivalent to a net sea-level decrease of 0.6 mm a"1 under doubled CO2 conditions. This may compensate for a significant portion of the melt-induced sea-level rise from the smaller glaciers and ice caps, thus leaving thermal expansion as the dominant factor for sea-level rise over the next decades. This compensating effect, however, no longer applies should atmospheric CO2 concentration reach levels well above "doubled the present value". On the contrary, under these conditions, the greenhouse warming would become large enough to induce substantial melting also on the Antarctic ice sheet, thereby significantly accelerating global sea-level rise.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2577
Author(s):  
Mateusz Ciski ◽  
Krzysztof Rząsa

Climate change resulting from global warming has an increasing impact on Earth. The resulting sea level rise is starting to be noticed in some regions today, and based on projections, could have severe consequences in the future. These consequences would primarily be felt by residents of coastal areas, but through the potential for irreparable damage to cultural heritage sites, could be significant for the general public. The primary aim of the research undertaken in this article was to assess the threat to cultural heritage objects on the case study area of Tri-City, Poland. A review of available elevation data sources for their potential use in analyses of sea level changes was required. The selection of the optimal data source for the cultural heritage threat analysis of historic sites was carried out. The analyses were conducted for three scenarios, using ArcGIS Pro 2.7 software. A series of maps were thus prepared to show the threats to specific historic sites for various global sea level rise scenarios. Even with the slightest rise in sea level, monuments could be permanently lost. The authors point out that a lack of action to stop climate change could result not only in economic but also cultural losses.


Author(s):  
Wilfred A. Abia ◽  
Comfort A. Onya ◽  
Conalius E. Shum ◽  
Williette E. Amba ◽  
Kareen L. Niba ◽  
...  

AbstractFood security is a major public health priority in Cameroon, amidst climate change and sea level rise (CC/SLR), vis-à-vis the ever-increasing population growth with associated challenges. CC/SLR, singly or combine, is well known to have severe impacts on agricultural productivity, food security, socioeconomic activities and ecosystem (environment, plant and animal) health systems in coastal areas. They contribute to natural disasters including erosion, flooding, inundation of coastal lowlands, and saltwater intrusion, altogether reducing agricultural productivity. Additionally, these disasters provoke adverse animal, human, and environmental health implications; reduction in tourism; and potential close of some socioeconomic activities that constitute secondary (after agriculture), or main source of livelihood/income for many coastal indigents. Although there are inadequate reports on the impacts of CC/SLR, preliminary reports point to negative effects on crop production and socioeconomic activities in coastal Cameroon. This chapter highlights the susceptibility of coastal Cameroon agriculture and socioeconomic activities to CC/SLR. Furthermore, it has propose agricultural (CC/SLR and non-climatic) and educational intervention socioeconomic strategies for the mitigation and adaptation to CC/SLR and for sustainable agricultural productivity in coastal Cameroon. The proposed strategies may provide a small contribution toward a wider multi-stakeholder pool of strategies and which, when applied, may enhance food security in coastal Cameroon amidst CC/SLR and promote socioeconomic and touristic activities while reducing negative implications on animal, plant, human, and environmental health.


2017 ◽  
Author(s):  
Luisa Perini ◽  
Lorenzo Calabrese ◽  
Paolo Luciani ◽  
Marco Olivieri ◽  
Gaia Galassi ◽  
...  

Abstract. As a consequence of climate change and human-induced land subsidence, coastal zones are directly impacted by sea-level rise. In some particular areas, the effects on the ecosystem and the urbanisation are particularly enhanced. We focus on the Emilia-Romagna coastal plain in Northern Italy, bounded by the Po river mouth to the north and by the Apennines to the south. The plain is ~ 130 km long and is characterised by wide areas below sea level, in part reclaimed wetlands. In this context, several morphodynamic factors make the shore and back-shore unstable. During next decades, the combined effects of land subsidence and of the sea-level rise in consequence of climate change are expected to enhance the shoreline instability, leading to a further retreat. The consequent loss of beaches would impact the economy of the region, tightly connected with tourism infrastructures. Furthermore, the loss of wetlands and dunes would threaten the ecosystem, crucial for the preservation of life and environment. These specific conditions show the importance of a precise definition of the possible local impacts of the ongoing and future climate variations. The aim of this work is the characterisation of vulnerability in different sectors of the coastal plain and the recognition of the areas in which human intervention is urgently required. The IPCC AR5 sea-level scenarios are merged with new high resolution terrain models, current data for local subsidence and predictions of a flooding model (in_CoastFlood) to develop different scenarios for the impact of sea-level rise to year 2100. First, the potential land loss due to the combined effect of subsidence and sea-level rise is extrapolated. Second, the increase of floodable areas in consequence of storm surges is quantitatively determined. The results are expected to support the regional mitigation and adaptation strategies designed in response to climate change.


2021 ◽  
Vol 8 ◽  
Author(s):  
Angélique Melet ◽  
Carlo Buontempo ◽  
Matteo Mattiuzzi ◽  
Peter Salamon ◽  
Pierre Bahurel ◽  
...  

Sea-level rise is a direct consequence of climate change. Primarily due to ocean thermal expansion and transfer from land ice (glaciers, ice sheets) to the ocean, sea-level rise is therefore an integrated indicator of climate change. Coastal zones and communities are expected to be increasingly threatened by sea level changes, with various adverse and widespread impacts. The European Union’s Earth Observation Programmed, Copernicus, monitors our planet and its environment, for the ultimate benefit of society. This includes the monitoring of sea level changes and the provision of ancillary fields needed to assess sea-level rise coastal risks, to guide adaptation and to support related policies and directives. Copernicus is organized with a space component, including dedicated Earth Observation satellites (Sentinel missions), and services, which transform the wealth of satellite, in situ and integrated numerical model information into added-value datasets and information usable by scientists, managers and decision-makers, and the wider public. Here, an overview of the Copernicus products and services to inform on sea level rise adaptation is provided. Perspectives from Copernicus services on future evolutions to better inform on coastal sea level rise, associated risks, and support adaptation are also discussed.


Sign in / Sign up

Export Citation Format

Share Document