Safety, Efficacy, and Indications of β-Adrenergic Receptor Blockade to Reduce Heart Rate prior to Coronary CT Angiography

Radiology ◽  
2010 ◽  
Vol 257 (3) ◽  
pp. 614-623 ◽  
Author(s):  
Amir A. Mahabadi ◽  
Stephan Achenbach ◽  
Christof Burgstahler ◽  
Thorsten Dill ◽  
Roman Fischbach ◽  
...  
2012 ◽  
Vol 5 (1) ◽  
pp. 100-106
Author(s):  
WA Jahan ◽  
A Azam ◽  
S Deena ◽  
W Begum ◽  
M Rahman

For selected indications, coronary computed tomographic (CT) angiography is an established clinical technology for evaluation in patients suspected of having or known to have coronary artery disease. In coronary CT angiography, image quality is highly dependent on heart rate, with heart rate reduction to less than 60 beats per minute being important for both image quality and radiation dose reduction, especially when single-source CT scanners are used. â-Blockers are the first-line option for short-term reduction of heart rate prior to coronary CT angiography. In recent years, multiple âblocker administration protocols with oral and/or intravenous application have been proposed.This review article provides an overview of the indications, efficacy, and safety of â-blockade protocols prior to coronary CT angiography with respect to different scanner techniques. Moreover,implications for radiation exposure and left ventricular function analysis are discussed DOI: http://dx.doi.org/10.3329/cardio.v5i1.12280 Cardiovasc. j. 2012; 5(1): 100-106


2020 ◽  
Vol 30 (10) ◽  
pp. 5499-5506
Author(s):  
Judit Simon ◽  
Lili Száraz ◽  
Bálint Szilveszter ◽  
Alexisz Panajotu ◽  
Ádám Jermendy ◽  
...  

Abstract Objective To assess whether anthropometrics, clinical risk factors, and coronary artery calcium score (CACS) can predict the need of further testing after coronary CT angiography (CTA) due to non-diagnostic image quality and/or the presence of significant stenosis. Methods Consecutive patients who underwent coronary CTA due to suspected coronary artery disease (CAD) were included in our retrospective analysis. We used multivariate logistic regression and receiver operating characteristics analysis containing anthropometric factors: body mass index, heart rate, and rhythm irregularity (model 1); and parameters used for pre-test likelihood estimation: age, sex, and type of angina (model 2); and also added total calcium score (model 3) to predict downstream testing. Results We analyzed 4120 (45.7% female, 57.9 ± 12.1 years) patients. Model 3 significantly outperformed models 1 and 2 (area under the curve, 0.84 [95% CI 0.83–0.86] vs. 0.56 [95% CI 0.54–0.58] and 0.72 [95% CI 0.70–0.74], p < 0.001). For patients with sinus rhythm of 50 bpm, in case of non-specific angina, CACS above 435, 756, and 944; in atypical angina CACS above 381, 702, and 890; and in typical angina CACS above 316, 636, and 824 correspond to 50%, 80%, and 90% probability of further testing, respectively. However, higher heart rates and arrhythmias significantly decrease these cutoffs (p < 0.001). Conclusion CACS significantly increases the ability to identify patients in whom deferral from coronary CTA may be advised as CTA does not lead to a final decision regarding CAD management. Our results provide individualized cutoff values for given probabilities of the need of additional testing, which may facilitate personalized decision-making to perform or defer coronary CTA. Key Points • Anthropometric parameters on their own are insufficient predictors of downstream testing. Adding parameters of the Diamond and Forrester pre-test likelihood test significantly increases the power of prediction. • Total CACS is the most important independent predictor to identify patients in whom coronary CTA may not be recommended as CTA does not lead to a final decision regarding CAD management. • We determined specific CACS cutoff values based on the probability of downstream testing by angina-, arrhythmia-, and heart rate–based groups of patients to help individualize patient management.


2018 ◽  
Vol 28 (10) ◽  
pp. 1148-1153 ◽  
Author(s):  
Hirofumi Watanabe ◽  
Hiroshi Kamiyama ◽  
Masataka Kato ◽  
Akiko Komori ◽  
Yuriko Abe ◽  
...  

AbstractBackgroundThere is no standard dose or protocol for beta-blocker administration as preconditioning in children undergoing coronary CT angiography.MethodsA total of 63 consecutive patients, with a mean age of 10.0±3.1 years, who underwent coronary CT angiography to assess possible coronary complications were enrolled in a single-centre, retrospective study. All patients were given an oral beta-blocker 1 hour before coronary CT angiography. Additional oral beta-blocker or intravenous beta-blocker was given to those with a high heart rate. We compared image quality, radiation exposure, and adverse events among the patients without additional beta-blocker, with additional oral beta-blocker, and with additional intravenous beta-blocker.ResultsThere were no significant differences in image quality or radiation exposure among the groups. The heart rate just before scanning was significantly correlated with image quality (p<0.001, r=−0.533) but was not correlated with radiation exposure (p=0.45, r=0.096). There were no adverse events related to any allergic reaction, thereby showing the effectiveness of the beta-blocker.ConclusionInitial oral beta-blocker administration (0.8 mg/kg/dose) should be administered to all children undergoing coronary CT angiography. Additional intravenous beta-blocker should be given to those with poor heart rate control to improve image quality without increasing radiation exposure or allowing adverse events.


2021 ◽  
Author(s):  
Kevin Forton ◽  
Michel Lamotte ◽  
Alexis Gillet ◽  
Martin Chaumont ◽  
Van De Borne Philippe ◽  
...  

Abstract Background: Beta-blockers are increasingly prescribed while the effects of beta-adrenergic receptor blockade on cardio-pulmonary exercise test (CPET) derived parameters remain under-studied. Methods: 21 young healthy adults repeated 3 CPET at an interval of 7 days at the same time of the day. The tests were performed 3 hours after a random, double blind, cross-over single dose intake of placebo, 2.5 mg bisoprolol or 5 mg bisoprolol. Gaz exchange, heart rate and blood pressure were measured at rest and during cyclo-ergometric CPET.Results: Maximal workload and VO2max were unaffected by the treatment, with maximal respiratory exchange ratio > 1.15 in all tests. A beta-blocker dose-dependent effect reduced resting and maximal blood pressure and heart rate and the chronotropic response to exercise, evaluated by the heart rate/VO2 slope (placebo: 2,9 ± 0,4 beat/ml/kg; 2,5 mg bisoprolol: 2,4 ± 0,5 beat/ml/kg; 5 mg bisoprolol: 2,3 ± 0,4 beat/ml/kg, p<0.001). Ventilation efficiency measured by the VE/VCO2 slope and the ventilatory equivalent for CO2 at the ventilatory threshold were not affected by beta1-receptor blockade. Post-exercise chronotropic recovery measured after 1 min was enhanced under beta1-blocker (placebo: 26 ± 7 bpm; 2,5 mg bisoprolol: 32 ± 6 bpm; 5 mg bisoprolol: 33 ± 6 bpm, p<0.01).Conclusion: The present results suggest that a single dose of bisoprolol does not affect metabolism, respiratory response and exercise capacity. However, beta-adrenergic blockade dose-dependently reduced exercise hemodynamic response by lowering the pressure and chronotropic responses.


1996 ◽  
Vol 271 (4) ◽  
pp. H1473-H1482 ◽  
Author(s):  
M. Iwase ◽  
Y. Ishikawa ◽  
Y. T. Shen ◽  
R. P. Shannon ◽  
N. Sato ◽  
...  

Because major cardiovascular disease states are characterized by defects in adenylyl cyclase regulation, it becomes important to understand the mechanisms by which adenylyl cyclase activators affect inotropy and chronotropy in intact conscious animals. Accordingly, we examined the inotropic and chronotropic responses to forskolin in 11 normal conscious, chronically instrumented dogs and 3 dogs with ventricular denervation (VD). Left ventricular first derivative of pressure (LV dP/dt) increased by 96 +/- 7%, P < 0.05, in response to forskolin (50 nmol.kg-1.min-1) in normal dogs and by significantly less, 52 +/- 14%, in VD dogs. Circulating norepinephrine (NE) levels increased similarly in both groups (from 226 +/- 18 to 389 +/- 33 pg/ml in normal dogs, from 177 +/- 23 to 329 +/- 71 pg/ml in VD dogs). In the presence of ganglionic blockade, the increase in LV dP/dt in response to forskolin was reduced (+62 +/- 4%) in normal dogs but was unchanged in VD dogs (+52 +/- 12%). Ganglionic blockade abolished the increase in circulating NE levels in both groups. Increases in heart rate in the presence of ganglionic blockade (+54 +/- 6 beats/min) were less than in the presence of atropine alone (+92 +/- 10 beats/min). Notably, the LV dP/dt and heart rate responses to forskolin were further attenuated by beta-adrenergic receptor blockade in the presence and absence of ganglionic blockade. Morphine also attenuated the increases in both LV dP/dt and plasma NE in response to forskolin. Increases in LV dP/dt in response to NKH-477 (30 micrograms/kg), a water-soluble forskolin derivative, were similar before and after ganglionic blockade (+63 +/- 8 and +51 +/- 10%, respectively). However, in vitro experiments in LV sarcolemmal membrane preparations demonstrated that stimulation of adenylyl cyclase by forskolin and NKH-477 was not affected by beta-adrenergic receptor blockade. These results indicate that in conscious dogs, inotropic and chronotropic effects of forskolin are not only due to direct activation of adenylyl cyclase, but the effects also are mediated by neural mechanisms and potentiated by the prevailing level of sympathetic tone.


2019 ◽  
Vol 26 (11) ◽  
pp. 1544-1549 ◽  
Author(s):  
Saima Mushtaq ◽  
Edoardo Conte ◽  
Eleonora Melotti ◽  
Daniele Andreini

Sign in / Sign up

Export Citation Format

Share Document