scholarly journals Convolutional Neural Networks for Automated Fracture Detection and Localization on Wrist Radiographs

2019 ◽  
Vol 1 (1) ◽  
pp. e180001 ◽  
Author(s):  
Yee Liang Thian ◽  
Yiting Li ◽  
Pooja Jagmohan ◽  
David Sia ◽  
Vincent Ern Yao Chan ◽  
...  
2020 ◽  
Vol 39 (12) ◽  
pp. 3855-3867 ◽  
Author(s):  
Jihwan Youn ◽  
Martin Lind Ommen ◽  
Matthias Bo Stuart ◽  
Erik Vilain Thomsen ◽  
Niels Bent Larsen ◽  
...  

Processes ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 457 ◽  
Author(s):  
William Raveane ◽  
Pedro Luis Galdámez ◽  
María Angélica González Arrieta

The difficulty in precisely detecting and locating an ear within an image is the first step to tackle in an ear-based biometric recognition system, a challenge which increases in difficulty when working with variable photographic conditions. This is in part due to the irregular shapes of human ears, but also because of variable lighting conditions and the ever changing profile shape of an ear’s projection when photographed. An ear detection system involving multiple convolutional neural networks and a detection grouping algorithm is proposed to identify the presence and location of an ear in a given input image. The proposed method matches the performance of other methods when analyzed against clean and purpose-shot photographs, reaching an accuracy of upwards of 98%, but clearly outperforms them with a rate of over 86% when the system is subjected to non-cooperative natural images where the subject appears in challenging orientations and photographic conditions.


2021 ◽  
Author(s):  
shrikant pawar ◽  
Aditya Stanam ◽  
Rushikesh Chopade

Bounding box algorithms are useful in localization of image patterns. Recently, utilization of convolutional neural networks on X-ray images has proven a promising disease prediction technique. However, pattern localization over prediction has always been a challenging task with inconsistent coordinates, sizes, resolution and capture positions of an image. Several model architectures like Fast R-CNN, Faster R-CNN, Histogram of Oriented Gradients (HOG), You only look once (YOLO), Region-based Convolutional Neural Networks (R-CNN), Region-based Fully Convolutional Networks (R-FCN), Single Shot Detector (SSD), etc. are used for object detection and localization in modern-day computer vision applications. SSD and region-based detectors like Fast R-CNN or Faster R-CNN are very similar in design and implementation, but SSD have shown to work efficiently with larger frames per second (FPS) and lower resolution images. In this article, we present a unique approach of SSD with a VGG-16 network as a backbone for feature detection of bounding box algorithm to predict the location of an anomaly within chest X-ray image.


Sign in / Sign up

Export Citation Format

Share Document