scholarly journals Single shot detector application for image disease localization

2021 ◽  
Author(s):  
shrikant pawar ◽  
Aditya Stanam ◽  
Rushikesh Chopade

Bounding box algorithms are useful in localization of image patterns. Recently, utilization of convolutional neural networks on X-ray images has proven a promising disease prediction technique. However, pattern localization over prediction has always been a challenging task with inconsistent coordinates, sizes, resolution and capture positions of an image. Several model architectures like Fast R-CNN, Faster R-CNN, Histogram of Oriented Gradients (HOG), You only look once (YOLO), Region-based Convolutional Neural Networks (R-CNN), Region-based Fully Convolutional Networks (R-FCN), Single Shot Detector (SSD), etc. are used for object detection and localization in modern-day computer vision applications. SSD and region-based detectors like Fast R-CNN or Faster R-CNN are very similar in design and implementation, but SSD have shown to work efficiently with larger frames per second (FPS) and lower resolution images. In this article, we present a unique approach of SSD with a VGG-16 network as a backbone for feature detection of bounding box algorithm to predict the location of an anomaly within chest X-ray image.

2017 ◽  
Vol 37 (4-5) ◽  
pp. 452-471 ◽  
Author(s):  
Connor Schenck ◽  
Dieter Fox

Liquids are an important part of many common manipulation tasks in human environments. If we wish to have robots that can accomplish these types of tasks, they must be able to interact with liquids in an intelligent manner. In this paper, we investigate ways for robots to perceive and reason about liquids. That is, a robot asks the questions What in the visual data stream is liquid? and How can I use that to infer all the potential places where liquid might be? We collected two data sets to evaluate these questions, one using a realistic liquid simulator and another using our robot. We used fully convolutional neural networks to learn to detect and track liquids across pouring sequences. Our results show that these networks are able to perceive and reason about liquids, and that integrating temporal information is important to performing such tasks well.


2021 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Ivan Lorencin ◽  
Sandi Baressi Šegota ◽  
Nikola Anđelić ◽  
Anđela Blagojević ◽  
Tijana Šušteršić ◽  
...  

COVID-19 represents one of the greatest challenges in modern history. Its impact is most noticeable in the health care system, mostly due to the accelerated and increased influx of patients with a more severe clinical picture. These facts are increasing the pressure on health systems. For this reason, the aim is to automate the process of diagnosis and treatment. The research presented in this article conducted an examination of the possibility of classifying the clinical picture of a patient using X-ray images and convolutional neural networks. The research was conducted on the dataset of 185 images that consists of four classes. Due to a lower amount of images, a data augmentation procedure was performed. In order to define the CNN architecture with highest classification performances, multiple CNNs were designed. Results show that the best classification performances can be achieved if ResNet152 is used. This CNN has achieved AUCmacro¯ and AUCmicro¯ up to 0.94, suggesting the possibility of applying CNN to the classification of the clinical picture of COVID-19 patients using an X-ray image of the lungs. When higher layers are frozen during the training procedure, higher AUCmacro¯ and AUCmicro¯ values are achieved. If ResNet152 is utilized, AUCmacro¯ and AUCmicro¯ values up to 0.96 are achieved if all layers except the last 12 are frozen during the training procedure.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 879
Author(s):  
Clíssia Barboza da Silva ◽  
Alysson Alexander Naves Silva ◽  
Geovanny Barroso ◽  
Pedro Takao Yamamoto ◽  
Valter Arthur ◽  
...  

The application of artificial intelligence (AI) such as deep learning in the quality control of grains has the potential to assist analysts in decision making and improving procedures. Advanced technologies based on X-ray imaging provide markedly easier ways to control insect infestation of stored products, regardless of whether the quality features are visible on the surface of the grains. Here, we applied contrast enhancement algorithms based on peripheral equalization and calcification emphasis on X-ray images to improve the detection of Sitophilus zeamais in maize grains. In addition, we proposed an approach based on convolutional neural networks (CNNs) to identity non-infested and infested classes using three different architectures; (i) Inception-ResNet-v2, (ii) Xception and (iii) MobileNetV2. In general, the prediction models developed based on the MobileNetV2 and Xception architectures achieved higher accuracy (≥0.88) in identifying non-infested grains and grains infested by maize weevil, with a correct classification from 0.78 to 1.00 for validation and test sets. Hence, the proposed approach using enhanced radiographs has the potential to provide precise control of Sitophilus zeamais for safe human consumption of maize grains. The proposed method can automatically recognize food contaminated with hidden storage pests without manual features, which makes it more reliable for grain inspection.


2019 ◽  
Vol 38 (5) ◽  
pp. 1197-1206 ◽  
Author(s):  
Hojjat Salehinejad ◽  
Errol Colak ◽  
Tim Dowdell ◽  
Joseph Barfett ◽  
Shahrokh Valaee

Proceedings ◽  
2020 ◽  
Vol 54 (1) ◽  
pp. 31
Author(s):  
Joaquim de Moura ◽  
Lucía Ramos ◽  
Plácido L. Vidal ◽  
Jorge Novo ◽  
Marcos Ortega

The new coronavirus (COVID-19) is a disease that is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). On 11 March 2020, the coronavirus outbreak has been labelled a global pandemic by the World Health Organization. In this context, chest X-ray imaging has become a remarkably powerful tool for the identification of patients with COVID-19 infections at an early stage when clinical symptoms may be unspecific or sparse. In this work, we propose a complete analysis of separability of COVID-19 and pneumonia in chest X-ray images by means of Convolutional Neural Networks. Satisfactory results were obtained that demonstrated the suitability of the proposed system, improving the efficiency of the medical screening process in the healthcare systems.


Author(s):  
Sarah Badr AlSumairi ◽  
Mohamed Maher Ben Ismail

Pneumonia is an infectious disease of the lungs. About one third to one half of pneumonia cases are caused by bacteria. Early diagnosis is a critical factor for a successful treatment process. Typically, the disease can be diagnosed by a radiologist using chest X-ray images. In fact, chest X-rays are currently the best available method for diagnosing pneumonia. However, the recognition of pneumonia symptoms is a challenging task that relies on the availability of expert radiologists. Such “human” diagnosis can be inaccurate and subjective due to lack of clarity and erroneous decision. Moreover, the error can increase more if the physician is requested to analyze tens of X-rays within a short period of time. Therefore, Computer-Aided Diagnosis (CAD) systems were introduced to support and assist physicians and make their efforts more productive. In this paper, we investigate, design, implement and assess customized Convolutional Neural Networks to overcome the image-based Pneumonia classification problem. Namely, ResNet-50 and DenseNet-161 models were inherited to design customized deep network architecture and improve the overall pneumonia classification accuracy. Moreover, data augmentation was deployed and associated with standard datasets to assess the proposed models. Besides, standard performance measures were used to validate and evaluate the proposed system.


2021 ◽  
Author(s):  
Sandi Baressi Šegota ◽  
◽  
Simon Lysdahlgaard ◽  
Søren Hess ◽  
Ronald Antulov

The fact that Artificial Intelligence (AI) based algorithms exhibit a high performance on image classification tasks has been shown many times. Still, certain issues exist with the application of machine learning (ML) artificial neural network (ANN) algorithms. The best known is the need for a large amount of statistically varied data, which can be addressed with expanded collection or data augmentation. Other issues are also present. Convolutional neural networks (CNNs) show extremely high performance on image-shaped data. Despite their performance, CNNs exhibit a large issue which is the sensitivity to image orientation. Previous research shows that varying the orientation of images may greatly lower the performance of the trained CNN. This is especially problematic in certain applications, such as X-ray radiography, an example of which is presented here. Previous research shows that the performance of CNNs is higher when used on images in a single orientation (left or right), as opposed to the combination of both. This means that the data needs to be differentiated before it enters the classification model. In this paper, the CNN-based model for differentiation between left and right-oriented images is presented. Multiple CNNs are trained and tested, with the highest performing being the VGG16 architecture which achieved an Accuracy of 0.99 (+/- 0.01), and an AUC of 0.98 (+/- 0.01). These results show that CNNs can be used to address the issue of orientation sensitivity by splitting the data in advance of being used in classification models.


Sign in / Sign up

Export Citation Format

Share Document