Investigation of Water Breakthrough and Flow in Gas Diffusion Layers and Relavance to Fuel Cell Water Management

2013 ◽  
Vol 50 (2) ◽  
pp. 487-501 ◽  
Author(s):  
Z. Lu ◽  
J. Patterson
Author(s):  
Zhongying Shi ◽  
Xia Wang ◽  
Laila Guessous

The gas diffusion layer (GDL) plays an important role in maintaining suitable water management in a proton exchange membrane fuel cell. The properties of the gas diffusion layer, such as its porosity, permeability, wettability, and thickness, are affected by the shoulders of the bipolar plates due to the compression applied in the assembly process. Compression therefore influences the water management inside fuel cells. A two-phase fuel cell model was used to study the water management problem in a proton exchange membrane fuel cell with interdigitated flow channels. The effect of the compression on the fuel cell performance was numerically investigated for a variety of GDL parameters. This paper focuses on studying the water management of fuel cells under compression for various types of gas diffusion layers. First, the deformation of a gas diffusion layer due to compression applied from the shoulders of the bipolar plates was modeled as a plain-strain problem and was determined using finite element analysis (FEA). The porosity and the permeability of the gas diffusion layer were then recalculated based on the deformation results. Next, the deformed domain from the FEA model was coupled with a fuel cell model, and the effects of the compression during the assembly process on the water management and fuel cell performance were studied for gas diffusion layers with different thicknesses, porosities, and compressive moduli. It was found that the deformation of the GDL results in a low oxygen concentration at the reaction site. The saturation level of liquid water increases along the flow direction, and is higher when the compression effect is considered in the simulation.


2019 ◽  
Vol 33 (1) ◽  
pp. 945-954 ◽  
Author(s):  
Hiroshi Ito ◽  
Tetsuhiko Maeda ◽  
Akihiro Nakano ◽  
Chul Min Hwang ◽  
Masayoshi Ishida ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2967
Author(s):  
Adrian Mularczyk ◽  
Andreas Michalski ◽  
Michael Striednig ◽  
Robert Herrendörfer ◽  
Thomas J. Schmidt ◽  
...  

Facilitating the proper handling of water is one of the main challenges to overcome when trying to improve fuel cell performance. Specifically, enhanced removal of liquid water from the porous gas diffusion layers (GDLs) holds a lot of potential, but has proven to be non-trivial. A main contributor to this removal process is the gaseous transport of water following evaporation inside the GDL or catalyst layer domain. Vapor transport is desired over liquid removal, as the liquid water takes up pore space otherwise available for reactant gas supply to the catalytically active sites and opens up the possibility to remove the waste heat of the cell by evaporative cooling concepts. To better understand evaporative water removal from fuel cells and facilitate the evaporative cooling concept developed at the Paul Scherrer Institute, the effect of gas speed (0.5–10 m/s), temperature (30–60 °C), and evaporation domain (0.8–10 mm) on the evaporation rate of water from a GDL (TGP-H-120, 10 wt% PTFE) has been investigated using an ex situ approach, combined with X-ray tomographic microscopy. An along-the-channel model showed good agreement with the measured values and was used to extrapolate the differential approach to larger domains and to investigate parameter variations that were not covered experimentally.


Sign in / Sign up

Export Citation Format

Share Document