Rapid Measurement of the Apparent Transference Number and Salt Diffusion Coefficient in Solid Polymer Electrolytes

1999 ◽  
Vol 2 (4) ◽  
pp. 187 ◽  
Author(s):  
Lynn Christie
2014 ◽  
Vol 895 ◽  
pp. 130-133 ◽  
Author(s):  
W.F. Ng ◽  
Mui Nyuk Chai ◽  
M.I.N. Isa

Novel solid polymer electrolytes containing carboxy methylcellulose (CMC) are prepared based on the vary concentration (0 - 45 wt. %) of citric acid (CA) via solution casting technique. The ion conductivity is studied by electrical impedance spectroscopy and the ionic mobility, μ and the diffusion coefficient, D is investigated by transference number measurement. The highest ionic conductivity at room temperature (303K) is 4.38 x 10-7 S cm-1 for 40 wt. % CA. The values of μ+ and D+ were higher than μ- and D- respectively, implying that the CMC-CA solid polymer electrolytes are proton conductor.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2257 ◽  
Author(s):  
Shujahadeen B. Aziz ◽  
Iver Brevik ◽  
Muhamad H. Hamsan ◽  
M. A. Brza ◽  
Muaffaq M. Nofal ◽  
...  

Compatible green polymer electrolytes based on methyl cellulose (MC) were prepared for energy storage electrochemical double-layer capacitor (EDLC) application. X-ray diffraction (XRD) was conducted for structural investigation. The reduction in the intensity of crystalline peaks of MC upon the addition of sodium iodide (NaI) salt discloses the growth of the amorphous area in solid polymer electrolytes (SPEs). Impedance plots show that the uppermost conducting electrolyte had a smaller bulk resistance. The highest attained direct current DC conductivity was 3.01 × 10−3 S/cm for the sample integrated with 50 wt.% of NaI. The dielectric analysis suggests that samples in this study showed non-Debye behavior. The electron transference number was found to be lower than the ion transference number, thus it can be concluded that ions are the primary charge carriers in the MC–NaI system. The addition of a relatively high concentration of salt into the MC matrix changed the ion transfer number from 0.75 to 0.93. From linear sweep voltammetry (LSV), the green polymer electrolyte in this work was actually stable up to 1.7 V. The consequence of the cyclic voltammetry (CV) plot suggests that the nature of charge storage at the electrode–electrolyte interfaces is a non-Faradaic process and specific capacitance is subjective by scan rates. The relatively high capacitance of 94.7 F/g at a sweep rate of 10 mV/s was achieved for EDLC assembly containing a MC–NaI system.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Vincent St-Onge ◽  
Mengyang Cui ◽  
Sylviane Rochon ◽  
Jean-Christophe Daigle ◽  
Jerome P. Claverie

AbstractThe discovery that polyethylene oxide promotes ionic conductivity led to the development of solid polymer electrolytes. However, their conductivity is severely reduced by crystallinity. Here, statistical copolymerization is used to design macromolecular architectures where crystallinity is disrupted by a minimal amount of non-ethylene oxide comonomer units. Using the Flory exclusion model, we demonstrate that polymers containing 18 mol% comonomer and 18 wt% LiTFSI are devoid of crystallinity. A 10 mol% comonomer content is sufficient to reach a conductivity of 0.3 × 10−4 S cm−1 at 25 °C. The Li+ transference number is 0.6, indicating that the comonomer units not only limit the crystallinity but also weaken the strength of the Li+ coordination to the polymer. The resulting solid polymer electrolyte is effective in an all-solid LFP|Li-metal battery operating at 25 °C, demonstrating that statistical copolymerization is an efficient tool for polymer electrolyte design.


2017 ◽  
Vol 46 (3) ◽  
pp. 797-815 ◽  
Author(s):  
Heng Zhang ◽  
Chunmei Li ◽  
Michal Piszcz ◽  
Estibaliz Coya ◽  
Teofilo Rojo ◽  
...  

Single lithium-ion conducting solid polymer electrolytes (SLIC-SPEs), with a high lithium-ion transference number, the absence of the detrimental effect of anion polarization, and low dendrite growth rate, could be an excellent choice of safe electrolyte materials for lithium batteries in the future.


Author(s):  
Jijeesh Nair ◽  
◽  
Matteo Destro ◽  
Claudio Gerbaldi ◽  
Federico Bella

Sign in / Sign up

Export Citation Format

Share Document