Kinetics of Oxidation Processes on Lead Electrode in  H 2 SO 4 : I . The Growth of the Lead Sulfate Layer

1995 ◽  
Vol 142 (11) ◽  
pp. 3643-3648 ◽  
Author(s):  
Yonglang Guo
Author(s):  
Lourdes T. Kist ◽  
Bruno Szpoganicz ◽  
Manuel G. Basallote ◽  
Maria J. F. Trujillo ◽  
Maria A. Mariez

In the present study solutions of a complex of Fe(II) with a macrocyclic ligand were prepared and their oxidation kinetics with hydrogen peroxide examined. The kinetic studies of the oxidation processes lead to values of rate constant of two-step which occur via first-order kinetics. The results are expected to result in a better knowledge of the mechanism of H202 activation in catalyzed oxidation of organic substrates.


2018 ◽  
Vol 69 (5) ◽  
pp. 1139-1144
Author(s):  
Iosif Lingvay ◽  
Adriana Mariana Bors ◽  
Livia Carmen Ungureanu ◽  
Valerica Stanoi ◽  
Traian Rus

For the purpose of using three different types of painting materials for the inner protection of the transformer vats, their behavior was studied under actual conditions of operation in the transformer (thermal stress in electro-insulating fluid based on the natural ester in contact with copper for electro-technical use and electro-insulating paper). By comparing determination of the content in furans products (HPLC technique) and gases formed (by gas-chromatography) in the electro-insulating fluid (natural ester with high oleic content) thermally aged at 130 �C to 1000 hours in closed glass vessels, it have been found that the presence the investigated painting materials lead to a change in the mechanism and kinetics of the thermo-oxidation processes. These changes are supported by oxygen dissolved in oil, what leads to decrease both to gases formation CO2, CO, H2, CH4, C2H4 and C2H6) and furans products (5-HMF, 2-FOL, 2 -FAL and 2-ACF). The painting materials investigated during the heat treatment applied did not suffer any remarkable structural changes affecting their functionality in the electro-insulating fluid based on vegetable esters.


1987 ◽  
Vol 52 (6) ◽  
pp. 1386-1396 ◽  
Author(s):  
Ján Mocák ◽  
Michal Németh ◽  
Mieczyslaw Lapkowski ◽  
Jerzy W. Strojek

A spectrocoulometric macrocell with a direct-view optical probe was designed and constructed, where the optical signal is transferred by light-conducting glass or quartz fibres permitting to work at wavelengths above 410 or 300 nm. The method of measurement on the proposed equipment is described; it was tested in the study of the mechanism and kinetics of oxidation of Fe(bipy)32+ ions (bipy = 2,2'-bipyridyl) with the use of potentiostatic coulometric electrolysis with open-circuit relaxation at a suitable time. The primary product of electrolysis, Fe(bipy)33+, undergoes a follow-up hydrolytic reaction with the formation of a binuclear complex. The rate constant of the reaction of the first order involves the contributions, kBi, from all bases present in solution; the corresponding values for H2O, OH-, bipy, and CH3COO- ions at a ionic strength 0·5 mol dm-3 and 25 °C were determined as kOH = (5·0 ± 0·6) . 105 mol-1 dm3 s-1, kbipy = (1·3 ± 0·2) . 10-1 mol-1 dm3 s-1, kAc = (5·8 ± 1·0) . 10-2 mol-1 dm3 s-1, and kH2O is not significant with respect to experimental errors.


1981 ◽  
Vol 46 (3) ◽  
pp. 693-700 ◽  
Author(s):  
Milan Strašák ◽  
Jaroslav Majer

The kinetics of oxidation of alkenes by thallic sulphate in aqueous solutions, involving the two reaction steps-the hydroxythallation and the dethallation - was studied, and the effect of salts on the kinetics was examined; this made it possible to specify more precisely the reaction mechanism and to suggest a qualitative model of the reaction coordinate. It was found that in homogeneous as well as in heterogeneous reaction conditions, the reaction can be accelerated appreciably by adding tetraalkylammonium salts. These salts not only operate as catalysts of the phase transfer, but also exert a significant kinetic effect, which can be explained with a simplification in terms of a stabilization of the transition state of the reaction.


Sign in / Sign up

Export Citation Format

Share Document