Macropore Formation in p-type Silicon and Si/SiGe/Si/SiGe/p-type Silicon

2019 ◽  
Vol 16 (3) ◽  
pp. 277-283
Author(s):  
Jae Hyun Kim ◽  
Hong-Seok Seo ◽  
K Phil Kim ◽  
Hong-Keun Lyu ◽  
Sung-Ho Woo ◽  
...  
1999 ◽  
Vol 146 (9) ◽  
pp. 3309-3314 ◽  
Author(s):  
R. B. Wehrspohn ◽  
F. Ozanam ◽  
J. ‐N. Chazalviel

2002 ◽  
Vol 149 (1) ◽  
pp. G70 ◽  
Author(s):  
A. Vyatkin ◽  
V. Starkov ◽  
V. Tzeitlin ◽  
H. Presting ◽  
J. Konle ◽  
...  

2014 ◽  
Vol 9 (1) ◽  
Author(s):  
Amel Slimani ◽  
Aicha Iratni ◽  
Hervé Henry ◽  
Mathis Plapp ◽  
Jean-Noël Chazalviel ◽  
...  

Proceedings ◽  
2018 ◽  
Vol 4 (1) ◽  
pp. 14 ◽  
Author(s):  
David Martín-Sánchez ◽  
Salvador Ponce-Alcántara ◽  
Jaime García-Rupérez

Tuning the pore diameter of porous silicon (PS) is essential for some applications such as biosensing, where the pore size can filter the entrance of some analytes or increase its sensitivity. However, macropore (>50 nm) formation on p-type silicon is still poorly known due to the strong dependence on resistivity. Electrochemically etching heavily doped p-type silicon usually forms micropores (<5 nm), but it has been found that bigger sizes can be achieved by adding an organic solvent to the electrolyte. In this work, we present the results of using dimethylformamide (DMF), dimethylsulfoxide (DMSO), potassium hydroxide (KOH) and sodium hydroxide (NaOH) for macropore formation in p-type silicon with a resistivity between 0.001 and 0.02 Ω∙cm, achieving pore sizes from 5 to 100 nm.


2005 ◽  
Vol 152 (4) ◽  
pp. C213 ◽  
Author(s):  
Farid A. Harraz ◽  
Kentaro Kamada ◽  
Katsutoshi Kobayashi ◽  
Tetsuo Sakka ◽  
Yukio H. Ogata

2000 ◽  
Vol 182 (1) ◽  
pp. 17-21 ◽  
Author(s):  
S. Lust ◽  
C. L�vy-Cl�ment

2019 ◽  
Vol 16 (3) ◽  
pp. 291-297
Author(s):  
Jae Hyun Kim ◽  
K Phil Kim ◽  
Hong-Seok Seo ◽  
Hong-Keun Lyu ◽  
Sung-Ho Woo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document