Electrochemical Investigations of the Corrosion Protection Properties of an Epoxy-Ester Coating Filled with Cerium Acetyl Acetonate Anticorrosive Pigment

2017 ◽  
Vol 164 (13) ◽  
pp. C709-C716 ◽  
Author(s):  
M. J. Palimi ◽  
E. Alibakhshi ◽  
G. Bahlakeh ◽  
B. Ramezanzadeh ◽  
M. Mahdavian
2015 ◽  
Vol 62 (4) ◽  
pp. 197-211 ◽  
Author(s):  
Andrea Kalendova ◽  
Martina Hejdová ◽  
David Vesely

Purpose – The purpose of this paper is to synthesize anticorrosion pigments of the perovskite type, YXO3, where X = Ti, Zr, Mn or Al and Y = Ca, Sr, La or Fe, for coating materials intended for corrosion protection of metals. Also, to synthesize pigments containing hexavalent Mo and W (double perovskites). Design/methodology/approach – The anticorrosion pigments were synthesized from oxides or carbonates by a high-temperature process. The following pigments were synthesized: CaTiO3, SrTiO3, CaZrO3, SrZrO3, LaTiO3, LaMnO3, CaMnO3, SrMnO3, LaFe2O3, SrFe2O3, LaAlO3, Ca2ZnWO6 and Ca2ZnMoO6. The pigments were characterized by the physico-chemical properties of the powders, by X-ray diffraction analysis and by scanning electron microscopy. Epoxy-ester coating materials containing the pigments at a volume concentration PVC = 10 per cent were prepared and subjected to tests examining their physico-mechanical properties and tests in simulated corrosion atmospheres. Findings – The perovskite structure was identified in the majority of the pigments. The pigments were found to impart good corrosion inhibiting properties to coating materials. The highest calculated anticorrosion efficiency was found for paints containing CaMnO3 or SrMnO3 as the pigments. Practical implications – The pigments synthesized can be used with advantage in paints intended for corrosion protection of the substrate metals. Originality/value – The use of the above pigments in anticorrosion coating materials to protect metals is new. Especially beneficial are the uses and procedures for the synthesis of anticorrosion pigments which do not contain heavy metals and are acceptable from the environmental protection aspect.


2001 ◽  
Vol 11 (PR3) ◽  
pp. Pr3-861-Pr3-867 ◽  
Author(s):  
S. M. Zemskova ◽  
J. A. Haynes ◽  
K. M. Cooley

2020 ◽  
Vol 117 (6) ◽  
pp. 610
Author(s):  
Nadia Hammouda ◽  
Kamel Belmokre

Organic coatings are widely employed in the corrosion protection of most metal surfaces, particularly steel. They provide a barrier against corrosive species present in the environment, due to their high resistance to oxygen, water and ions transport. This study focuses on the evaluation of corrosion protection performance of epoxy paint on the carbon steel surface in chloride environment (3% NaCl) by Electrochemical Impedance Spectroscopy (EIS). The electrochemical behavior of painted surface was estimated by EIS parameters that contained paint film resistance, paint film capacitance and double layer capacitance. On the basis of calculation using EIS spectrums it was observed that pore resistance (Rpore) decreased with the appearance of doubled layer capacitance (Cdl) due to the electrolyte penetration through the film. This was further confirmed by the decrease of diffusion resistance (Rd) which was also the indicator of the deterioration of paint film protectiveness. Microscopic analyses have shown that oxidation dominates the corroded surfaces.


Sign in / Sign up

Export Citation Format

Share Document