Electrochemical Sensor Mediated by Synthesis of CdO Nanoparticles-Titanium Dioxide Composite Modified Glassy Carbon Electrode for Quantification of Zolmitriptan

2013 ◽  
Vol 160 (10) ◽  
pp. H687-H692 ◽  
Author(s):  
Rajeev Jain ◽  
Preeti Pandey
2020 ◽  
Vol 16 (4) ◽  
pp. 424-437
Author(s):  
Kubra Ozturk ◽  
Nurgul K. Bakirhan ◽  
Sibel A. Ozkan ◽  
Bengi Uslu

Background:: new and selective electrochemical sensor was developed for the determination of levocetirizine dihydrochloride, which is an antihistaminic drug. Method:: The investigation was performed by using cyclic, differential pulse and square wave voltammetric methods on the β-cyclodextrin modified glassy carbon electrode. It is thereby planned to obtain information about levocetirizine determination and its mechanism. Result:: The efficiency of experimental parameters including pH, scan rate, and accumulation potential and time on the anodic response of levocetirizine dihydrochloride was studied. By employing the developed method and under optimized conditions, the current showed linear dependence with a concentration in the range between 2 × 10-8 M and 6 × 10-6 M in pH 2.0 Britton Robinson (BR) buffer. Conclusion:: The achieved limits of detection and quantification were found as 3.73 × 10-10 M and 1.24 × 10-9 M, respectively. In addition, the possibility of applying the developed sensor for real sample analysis was investigated, so β-cyclodextrin modified glassy carbon electrode was used to determine levocetirizine dihydrochloride in Xyzal® tablet dosage form. Finally, this sensor was successfully applied to the real sample as a selective, simple, reproducible, repeatable electrochemical sensor.


The Analyst ◽  
2018 ◽  
Vol 143 (1) ◽  
pp. 297-303 ◽  
Author(s):  
Yang Gao ◽  
Xiufeng Wu ◽  
Hui Wang ◽  
Wenbo Lu ◽  
Mandong Guo

The highly sensitive and selective electrochemical sensor of hesperidin based on gold nanoparticles (AuNPs) and reduced graphene oxide (rGO) modified glassy carbon electrode (GCE) is reported.


2013 ◽  
Vol 850-851 ◽  
pp. 1279-1282 ◽  
Author(s):  
Su Xing Luo ◽  
Yuan Hui Wu ◽  
Hua Gou ◽  
Yan Liu

In this work, a simple and sensitive electrochemical method sensor was developed to determine salbutamol based on magnetic NiFe2O4nanoparticles modified glassy carbon electrode. It was found the anodic peak current of salbutamol was linear with the concentration of salbutamol from 2.0 μM to 60 μM with a detection limit of 1.0 μM (S/N=3). The developed method was successfully applied to determine salbutamol content in pork samples with satisfactory results.


Sign in / Sign up

Export Citation Format

Share Document