An on-Line Electrochemical Parameter Estimation Study on Lithium-Ion Batteries Using Neural Network (NN)

2017 ◽  
Vol 75 (20) ◽  
pp. 73-87
Author(s):  
Ali Jokar ◽  
Barzin Rajabloo ◽  
Martin Desilets ◽  
Marcel Lacroix

Author(s):  
Meng Wei ◽  
Min Ye ◽  
Jia Bo Li ◽  
Qiao Wang ◽  
Xin Xin Xu

State of charge (SOC) of the lithium-ion batteries is one of the key parameters of the battery management system, which the performance of SOC estimation guarantees energy management efficiency and endurance mileage of electric vehicles. However, accurate SOC estimation is a difficult problem owing to complex chemical reactions and nonlinear battery characteristics. In this paper, the method of the dynamic neural network is used to estimate the SOC of the lithium-ion batteries, which is improved based on the classic close-loop nonlinear auto-regressive models with exogenous input neural network (NARXNN) model, and the open-loop NARXNN model considering expected output is proposed. Since the input delay, feedback delay, and hidden layer of the dynamic neural network are usually selected by empirically, which affects the estimation performance of the dynamic neural network. To cover this weakness, sine cosine algorithm (SCA) is used for global optimal dynamic neural network parameters. Then, the experimental results are verified to obtain the effectiveness and robustness of the proposed method under different conditions. Finally, the dynamic neural network based on SCA is compared with unscented Kalman filter (UKF), back propagation neural network based on particle swarm optimization (BPNN-PSO), least-squares support vector machine (LS-SVM), and Gaussian process regression (GPR), the results show that the proposed dynamic neural network based on SCA is superior to other methods.


2021 ◽  
Vol 40 ◽  
pp. 102768
Author(s):  
Sangheon Lee ◽  
Seongho Han ◽  
Kyoung Hwan Han ◽  
Youngju Kim ◽  
Samarth Agarwal ◽  
...  

Author(s):  
Yanbo Che ◽  
Yibin Cai ◽  
Hongfeng Li ◽  
Yushu Liu ◽  
Mingda Jiang ◽  
...  

Abstract The working state of lithium-ion batteries must be estimated accurately and efficiently in the battery management system. Building a model is the most prevalent way of predicting the battery's working state. Based on the variable order equivalent circuit model, this paper examines the attenuation curve of battery capacity with the number of cycles. It identifies the order of the equivalent circuit model using Bayesian Information Criterion (BIC). Based on the correlation between capacity and resistance, the paper concludes that there is a nonlinear correlation between model parameters and state of health (SOH). The nonlinear autoregressive neural network with exogenous input (NARX) is used to fit the nonlinear correlation for capacity regeneration. Then, the self-adaptive weight particle swarm optimization (SWPSO) method is suggested to train the neural network. Finally, single-battery and multi-battery tests are planned to validate the accuracy of the SWPSO-NARX estimate of SOH. The experimental findings indicate that the SOH estimate effect is significant.


Sign in / Sign up

Export Citation Format

Share Document