State of charge estimation for lithium-ion batteries using dynamic neural network based on sine cosine algorithm

Author(s):  
Meng Wei ◽  
Min Ye ◽  
Jia Bo Li ◽  
Qiao Wang ◽  
Xin Xin Xu

State of charge (SOC) of the lithium-ion batteries is one of the key parameters of the battery management system, which the performance of SOC estimation guarantees energy management efficiency and endurance mileage of electric vehicles. However, accurate SOC estimation is a difficult problem owing to complex chemical reactions and nonlinear battery characteristics. In this paper, the method of the dynamic neural network is used to estimate the SOC of the lithium-ion batteries, which is improved based on the classic close-loop nonlinear auto-regressive models with exogenous input neural network (NARXNN) model, and the open-loop NARXNN model considering expected output is proposed. Since the input delay, feedback delay, and hidden layer of the dynamic neural network are usually selected by empirically, which affects the estimation performance of the dynamic neural network. To cover this weakness, sine cosine algorithm (SCA) is used for global optimal dynamic neural network parameters. Then, the experimental results are verified to obtain the effectiveness and robustness of the proposed method under different conditions. Finally, the dynamic neural network based on SCA is compared with unscented Kalman filter (UKF), back propagation neural network based on particle swarm optimization (BPNN-PSO), least-squares support vector machine (LS-SVM), and Gaussian process regression (GPR), the results show that the proposed dynamic neural network based on SCA is superior to other methods.

Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1546
Author(s):  
M. S. Hossain Lipu ◽  
M. A. Hannan ◽  
Aini Hussain ◽  
Afida Ayob ◽  
Mohamad H. M. Saad ◽  
...  

The development of an accurate and robust state-of-charge (SOC) estimation is crucial for the battery lifetime, efficiency, charge control, and safe driving of electric vehicles (EV). This paper proposes an enhanced data-driven method based on a time-delay neural network (TDNN) algorithm for state of charge (SOC) estimation in lithium-ion batteries. Nevertheless, SOC accuracy is subject to the suitable value of the hyperparameters selection of the TDNN algorithm. Hence, the TDNN algorithm is optimized by the improved firefly algorithm (iFA) to determine the optimal number of input time delay (UTD) and hidden neurons (HNs). This work investigates the performance of lithium nickel manganese cobalt oxide (LiNiMnCoO2) and lithium nickel cobalt aluminum oxide (LiNiCoAlO2) toward SOC estimation under two experimental test conditions: the static discharge test (SDT) and hybrid pulse power characterization (HPPC) test. Also, the accuracy of the proposed method is evaluated under different EV drive cycles and temperature settings. The results show that iFA-based TDNN achieves precise SOC estimation results with a root mean square error (RMSE) below 1%. Besides, the effectiveness and robustness of the proposed approach are validated against uncertainties including noise impacts and aging influences.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Jianping Gao ◽  
Hongwen He

Accurate state of charge (SoC) estimation is of great significance for the lithium-ion battery to ensure its safety operation and to prevent it from overcharging or overdischarging. To achieve reliable SoC estimation for Li4Ti5O12lithium-ion battery cell, three filtering methods have been compared and evaluated. A main contribution of this study is that a general three-step model-based battery SoC estimation scheme has been proposed. It includes the processes of battery data measurement, parametric modeling, and model-based SoC estimation. With the proposed general scheme, multiple types of model-based SoC estimators have been developed and evaluated for battery management system application. The detailed comparisons on three advanced adaptive filter techniques, which include extend Kalman filter, unscented Kalman filter, and adaptive extend Kalman filter (AEKF), have been implemented with a Li4Ti5O12lithium-ion battery. The experimental results indicate that the proposed model-based SoC estimation approach with AEKF algorithm, which uses the covariance matching technique, performs well with good accuracy and robustness; the mean absolute error of the SoC estimation is within 1% especially with big SoC initial error.


Author(s):  
Banghua Du ◽  
Zhang Yu ◽  
Shuhao Yi ◽  
Yanlin He ◽  
Yulin Luo

Abstract Lithium-ion batteries retired from electric vehicles can provide considerable economic benefits when they are retired for secondary use. However, retired batteries after screening and restructuring still face the problem of inaccurate battery pack state-of-charge (SOC) estimation due to the existence of extreme inconsistency. To solve this problem, an adaptive fading unscented Kalman filtering (AFUKF) algorithm based on the cell difference model (CDM) is proposed in this paper for improving the accuracy of SOC estimation of retired lithium-ion battery packs. Firstly, an improved CDM based on a hypothetical Rint model is developed based on a second-order resistor/capacitor equivalent circuit model. Secondly, an AFUKF algorithm is developed to improve the adaptability and robustness of local state estimation against process modelling errors. Finally, characteristic data are obtained by conducting discharge tests on the screened retired lithium-ion batteries under specific operating conditions. The proposed method can improve the accuracy of SOC estimation of retired lithium-ion battery packs and provide a new idea for SOC estimation of retired lithium-ion battery packs, as shown by the simulated real experimental data.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4968
Author(s):  
Quan Ouyang ◽  
Rui Ma ◽  
Zhaoxiang Wu ◽  
Guotuan Xu ◽  
Zhisheng Wang

The state-of-charge (SOC) is a fundamental indicator representing the remaining capacity of lithium-ion batteries, which plays an important role in the battery’s optimized operation. In this paper, the model-based SOC estimation strategy is studied for batteries. However, the battery’s model parameters need to be extracted through cumbersome prior experiments. To remedy such deficiency, a recursive least squares (RLS) algorithm is utilized for model parameter online identification, and an adaptive square-root unscented Kalman filter (SRUKF) is designed to estimate the battery’s SOC. As demonstrated in extensive experimental results, the designed adaptive SRUKF combined with RLS-based model identification is a promising SOC estimation approach. Compared with other commonly used Kalman filter-based methods, the proposed algorithm has higher precision in the SOC estimation.


2020 ◽  
Author(s):  
Jinpeng Tian ◽  
Rui XIONG ◽  
Weixiang Shen ◽  
Ju Wang

Abstract State of charge (SOC) estimation for lithium ion batteries plays a critical role in battery management systems for electric vehicles. Battery fractional order models (FOMs) which come from frequency-domain modelling have provided a distinct insight into SOC estimation. In this article, for the first time, we compare five state-of-the-art FOMs in terms of SOC estimation. Firstly, characterisation tests on lithium ion batteries are conducted, and the experimental results are used to identify FOM parameters. Parameter identification results show that increasing the complexity of FOMs cannot always improve accuracy. The model R(RQ)W shows superior identification accuracy than the other four FOMs. Secondly, the SOC estimation based on a fractional order unscented Kalman filter is conducted to compare model accuracy and computational burden under different profiles, memory lengths, ambient temperatures, cells and voltage/current drifts. The evaluation results reveal that the SOC estimation accuracy does not necessarily positively correlate to the complexity of FOMs. Although more complex models can have better robustness against temperature variation, R(RQ), the simplest FOM, can overall provide satisfactory accuracy and generalisation ability. It can also maintain high accuracy even under the occurrence of sensor drift.


2020 ◽  
Vol 27 (3) ◽  
pp. 100-108
Author(s):  
Pan Geng ◽  
Xiaoyan Xu ◽  
Tomasz Tarasiuk

AbstractAll-electric ships (AES) are considered an effective solution for reducing greenhouse gas emissions as they are a platform to use clean energy sources such as lithium-ion batteries, fuel cells and solar cells instead of fossil fuel. Even though these batteries are a promising alternative, the accuracy of the battery state of charge (SOC) estimation is a critical factor for their safe and reliable operation. The SOC is a key indicator of battery residual capacity. Its estimation can effectively prevent battery over-discharge and over-charge. Next, this enables reliable estimation of the operation time of fully electric ferries, where little time is spent at the harbour, with limited time available for charging. Thus, battery management systems are essential. This paper presents a neural network model of battery SOC estimation, using a long short-term memory (LSTM) recurrent neural network (RNN) as a method for accurate estimation of the SOC in lithium-ion batteries. The current, voltage and surface temperature of the batteries are used as the inputs of the neural network. The influence of different numbers of neurons in the neural network’s hidden layer on the estimation error is analysed, and the estimation error of the neural network under different training times is compared. In addition, the hidden layer is varied from 1 to 3 layers of the LSTM nucleus and the SOC estimation error is analysed. The results show that the maximum absolute SOC estimation error of the LSTM RNN is 1.96% and the root mean square error is 0.986%, which validates the feasibility of the method.


2020 ◽  
Author(s):  
Jinpeng Tian ◽  
Rui XIONG ◽  
Weixiang Shen ◽  
Ju Wang

Abstract State of charge (SOC) estimation for lithium ion batteries plays a critical role in battery management systems for electric vehicles. Battery fractional order models (FOMs) which come from frequency-domain modelling have provided a distinct insight into SOC estimation. In this article, we compare five state-of-the-art FOMs in terms of SOC estimation. To this end, firstly, characterisation tests on lithium ion batteries are conducted, and the experimental results are used to identify FOM parameters. Parameter identification results show that increasing the complexity of FOMs cannot always improve accuracy. The model R(RQ)W shows superior identification accuracy than the other four FOMs. Secondly, the SOC estimation based on a fractional order unscented Kalman filter is conducted to compare model accuracy and computational burden under different profiles, memory lengths, ambient temperatures, cells and voltage/current drifts. The evaluation results reveal that the SOC estimation accuracy does not necessarily positively correlate to the complexity of FOMs. Although more complex models can have better robustness against temperature variation, R(RQ), the simplest FOM, can overall provide satisfactory accuracy. Validation results on different cells demonstrate the generalisation ability of FOMs, and R(RQ) outperforms other models. Moreover, R(RQ) shows better robustness against truncation error and can maintain high accuracy even under the occurrence of current or voltage sensor drift.


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 321 ◽  
Author(s):  
Xin Lai ◽  
Wei Yi ◽  
Yuejiu Zheng ◽  
Long Zhou

In this paper, a novel model parameter identification method and a state-of-charge (SOC) estimator for lithium-ion batteries (LIBs) are proposed to improve the global accuracy of SOC estimation in the all SOC range (0–100%). Firstly, a subregion optimization method based on particle swarm optimization is developed to find the optimal model parameters of LIBs in each subregion, and the optimal number of subregions is investigated from the perspective of accuracy and computation time. Then, to solve the problem of a low accuracy of SOC estimation caused by large model error in the low SOC range, an improved extended Kalman filter (IEKF) algorithm with variable noise covariance is proposed. Finally, the effectiveness of the proposed methods are verified by experiments on two kinds of batteries under three working cycles, and case studies show that the proposed IEKF has better accuracy and robustness than the traditional extended Kalman filter (EKF) in the all SOC range.


Sign in / Sign up

Export Citation Format

Share Document