Hydrothermal Synthesis, Structural Transformations and Electrochemistry of Lithium Vanadyl Phosphates

Author(s):  
Jean-Luc Rouvière ◽  
Alain Bourret

The possible structural transformations during the sample preparations and the sample observations are important issues in electron microscopy. Several publications of High Resolution Electron Microscopy (HREM) have reported that structural transformations and evaporation of the thin parts of a specimen could happen in the microscope. Diffusion and preferential etchings could also occur during the sample preparation.Here we report a structural transformation of a germanium Σ=13 (510) [001] tilt grain boundary that occurred in a medium-voltage electron microscopy (JEOL 400KV).Among the different (001) tilt grain boundaries whose atomic structures were entirely determined by High Resolution Electron Microscopy (Σ = 5(310), Σ = 13 (320), Σ = 13 (510), Σ = 65 (1130), Σ = 25 (710) and Σ = 41 (910), the Σ = 13 (510) interface is the most interesting. It exhibits two kinds of structures. One of them, the M-structure, has tetracoordinated covalent bonds and is periodic (fig. 1). The other, the U-structure, is also tetracoordinated but is not strictly periodic (fig. 2). It is composed of a periodically repeated constant part that separates variable cores where some atoms can have several stable positions. The M-structure has a mirror glide symmetry. At Scherzer defocus, its HREM images have characteristic groups of three big white dots that are distributed on alternatively facing right and left arcs (fig. 1). The (001) projection of the U-structure has an apparent mirror symmetry, the portions of good coincidence zones (“perfect crystal structure”) regularly separate the variable cores regions (fig. 2).


2019 ◽  
Vol 14 (5) ◽  
pp. 493-495 ◽  
Author(s):  
Qinghua Yang ◽  
Chunni Xiao ◽  
Bingbing Chen ◽  
Lin Ma ◽  
Limei Xu

2020 ◽  
Author(s):  
Xiaojing Xia ◽  
Anupum Pant ◽  
Xuezhe Zhou ◽  
Elena Dobretsova ◽  
Alex Bard ◽  
...  

Fluoride crystals, due to their low phonon energies, are attractive hosts of trivalent lanthanide ions for applications in upconverting phosphors, quantum information science, and solid-state laser refrigeration. In this article, we report the rapid, low-cost hydrothermal synthesis of potassium lutetium fluoride (KLF) microcrystals for applications in solid-state laser refrigeration. Four crystalline phases were synthesized, namely orthorhombic K<sub>2</sub>LuF<sub>5</sub> (Pnma), trigonal KLuF<sub>4</sub> (P3<sub>1</sub>21), orthorhombic KLu<sub>2</sub>F<sub>7</sub> (Pna2<sub>1</sub>), and cubic KLu<sub>3</sub>F<sub>10</sub> (Fm3m), with each phase exhibiting unique microcrystalline morphologies. Luminescence spectra and emission lifetimes of the four crystalline phases were characterized based on the point-group symmetry of trivalent cations. Laser refrigeration was measured by observing both the optomechanical eigenfrequencies of microcrystals on cantilevers in vacuum, and also the Brownian dynamics of optically trapped microcrystals in water. Among all four crystalline phases, the most significant cooling was observed for 10%Yb:KLuF<sub>4</sub> with cooling of 8.6 $\pm$ 2.1 K below room temperature. Reduced heating was observed with 10%Yb:K<sub>2</sub>LuF<sub>5</sub>


2020 ◽  
Vol 86 (1) ◽  
pp. 38-43
Author(s):  
Vladimir A. Kim ◽  
Valeriya V. Lysenko ◽  
Anna A. Afanaseva ◽  
Khasan I. Turkmenov

Structural degradation of the material upon long-term thermal and force impacts is a complex process which includes migration of the grain boundaries, diffusion of the active elements of the external and technological environment, hydrogen embrittlement, aging, grain boundary corrosion and other mechanisms. Application of the fractal and multifractal formalism to the description of microstructures opens up wide opportunities for quantitative assessment of the structural arrangement of the material, clarifies and reveals new aspects of the known mechanisms of structural transformations. Multifractal parameterization allows us to study the processes of structural degradation from the images of microstructures and identify structural changes that are hardly distinguishable visually. Any quantitative structural indicator can be used to calculate the multifractal spectra of the microstructure, but the most preferable is that provides the maximum range of variation in the numerical values of the multifractal components. The results of studying structural degradation of steel 15Kh5M upon continuous duty are presented. It is shown that structural degradation of steel during operation under high temperatures and stresses is accompanied by enlargement of the microstructural objects, broadening of the grain boundaries and allocation of the dispersed particles which are represented as point objects in the images. The processes of structural degradation lead to an increase in the range of changes in the components of the multifractal spectra. High values of complex indicators of structural arrangement indicate to an increase in heterogeneity and randomness at the micro-scale level, but at the same time, to manifestation of the ordered combinations of individual submicrostructures. Those structural transformations adapt the material to external impacts and provide the highest reliability and fracture resistance of the material.


2020 ◽  
pp. 37-42
Author(s):  
O. N. Kanygina ◽  
◽  
M. M. Filyak ◽  
A. G. Chetverikova ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document