titanium sulfate
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 6)

H-INDEX

11
(FIVE YEARS 1)

Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 26
Author(s):  
Changsheng Shi ◽  
De Guo ◽  
Yang Li ◽  
Zhenxing Zhang ◽  
Ligang Tang

High efficiency slime water settlement is very important for ensuring washing water recycling in coal preparation plants. In order to improve the sedimentation of coal slime water, an iron ion-based coagulant was prepared by titanium ion complexation action using titanium sulfate as a main raw material, Fe3+ and NaH2PO3 as a stabilizer and NaHCO3 as an alkalizing agent. The particle size distribution of coal slime was measured, and the sedimentation test for coal slime water was carried out with PAM, polyaluminum chloride and polymerized titanium ferric sulfate (PTFS), respectively. Then, coal slime water sedimentation was investigated at different PAM dosages and polyaluminum chloride or coal slime water of PTFS with various molar ratios of PAM and ferrotitanium. The results showed that PAM and polyaluminum chloride could not make coal slime settle down, and PTFS showed a poor settlement effect. When polyaluminum chloride and PTFS were used together with PAM, it produced a molecular weight of 3 million respectively. Polyaluminum chloride needs 6.66 × 10−10 mol of PAM, PTFS needs 0.66 × 10−10 mol of PAM and the effect of sedimentation is improved. When the molar ratio of PTFS was 1:7, polymerization performance was effective. The sedimentation effect of PTFS was better than that of polymeric aluminum chloride coagulant usually used in coal preparation plants, especially when combined with flocculant, and high efficiency was reached. The surface potential and surface free energy of coal slime particles before and after adding coagulant were measured and analyzed by XDLVO theory to explain the action mechanism of PTFS coagulant. Experimental results demonstrated that PTFS can significantly improve the sedimentation of coal slime water, save the dosage of PAM and increase economic benefit.


2021 ◽  
Vol 5 (4) ◽  
pp. 72
Author(s):  
Vyacheslav Ivanovich Pavlenko ◽  
Andrey Ivanovich Gorodov ◽  
Roman Nikolayevich Yastrebinsky ◽  
Natalia Igorevna Cherkashina ◽  
Alexander Alexandrovich Karnauhov

Studies have been carried out to increase the adhesive interaction between a titanium hydride substrate and a copper coating. An additional layer containing chemically active groups was created on the surface of the spherical titanium hydride by chemisorption modification. This paper discusses the results of scanning electron microscopy (SEM) using energy-dispersive X-ray spectroscopic mapping of coatings obtained on spherical granules of titanium hydride before and after adsorption modification. The mechanism of interaction of the surface of spherical granules of titanium hydride and titanium sulfate salt is proposed. It is shown that the creation of a chemisorbed layer of hydroxotitanyl and the subsequent electrodeposition of metallic copper contribute to the formation of a multilayer shell of a titanium–copper coating on the surface of spherical titanium hydride granules (≡Ti-O-Cu-) with a high adhesive interaction. Results have been given for an experimental study of the thermal stability of the initial spherical granules of titanium hydride and granules coated with a multilayer titanium-copper shell.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 824
Author(s):  
Li-Yuan Zhang ◽  
Jia You ◽  
Qian-Wen Li ◽  
Zhi-Hong Dong ◽  
Ya-Jie Zhong ◽  
...  

F–TiO2 was prepared by a simple precipitation method using titanium sulfate as the titanium source, hydrogen fluoride as the fluorine source and ammonia as the precipitant. CdS/F–TiO2 composites were prepared by hydrothermal synthesis of CdS and F–TiO2. The surface morphology, crystal phase composition, ultraviolet absorption band, fluorescence intensity, element composition, valence state, specific surface and pore structure of the samples were characterized by using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), ultraviolet visible absorption spectrum (UV-Vis-Abs), Molecular fluorescence spectrophotometer (PL) and X-Ray photoelectron spectroscopy (XPS) and Surface area analyzer (BET), respectively. The effects of the dosage of the photocatalyst, pH value, the concentration of methyl orange and the addition of H2O2 on the photocatalytic performance were investigated with methyl orange solution as the target degradation product. The results showed the optimum condition for photodegradation of methyl orange by 1% CdS/F–TiO2 is that the pH value, the solid-liquid ratio, the concentration of methyl orange and the dosage of H2O2 is 2, 2 g/L, 10 mg/L and 3%, respectively. Under the same conditions, the degradation rate of methyl orange by 1% CdS/F–TiO2 was 93.36% when 300 W metal halide lamp was irradiated for 20 minutes, which was significantly higher than that of F–TiO2. CdS has a significant effect on the morphology, crystallinity, grain size and the compound probability of electrons and holes after the F–TiO2 modification. The composite causes a significant red shift at the edge of the F–TiO2 light absorption band. The photocatalytic degradation of methyl orange by 1% CdS/F–TiO2 follows the Langmuir-Hinshelwood first-order kinetic model.


Coatings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 701
Author(s):  
Li-Yuan Zhang ◽  
Yi Shui ◽  
Ling-Ling Zhao ◽  
Ping Zhu ◽  
Wen-Yong Xu ◽  
...  

The precursor for a lithium-ion sieve is prepared using an inorganic precipitation-peptization method with titanium sulfate as the titanium source and lithium acetate as the lithium source. The effects of Ni2+ (Nickel ions) doping on the stability of the sol, crystal morphology and interplanar spacing of Li2TiO3 are investigated. The results indicate that, after Ni2+ doping with varying fractions, the stability of the precursor sol first increases then decreases, and the maximum stabilization time of the precursor sol doped with 1% Ni2+ is 87 h. When doped with 1% Ni2+, the sol performance is most stable, the porous Li2TiO3 is obtained, and the specific surface area of Li2TiO3 increases by up to 1.349 m2/g from 0.911 m2/g. Accompanying the increase in calcination temperature, the inhibition of Ni2+ doping on the growth and crystallization of grains decreases. When the temperature is lower than 750 °C, Ni atoms replace the Ti atoms that are substituted for Li atoms in the original pure Li layer, forming lattice defects, resulting in the disappearance of (002) and (−131) diffraction peaks for Li2TiO3, the reduced ordering of crystal structure, a decrease in the interplanar spacing of the (002) plane, lattice expansion and an increase in the particle size to 100–200 nm. When the temperature exceeds 750 °C, with the increase of calcination temperature, the influence of Ni doping on the growth and crystallinity of grains decreases, and the (002) crystal surface starts to grow again.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Yunjian Wang ◽  
Yuchan Li

The preparation of high-purity brookite TiO2 with a unique morphology is rare and difficult. Herein, high-purity brookite TiO2 hollow spheres were hydrothermally synthesized by employing titanium sulfate as the titanium source and chloroacetic acid and sodium hydroxide as the pH regulator. The structure, morphology, and optical properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The results showed that the as-prepared brookite TiO2 exhibited a hollow-sphere morphology with a size of about 1.0 micrometer and showed a direct band gap of 3.13 eV. Additionally, thermal analysis in combination with infrared spectroscopy showed that the as-prepared brookite TiO2 was surface capped by water and organic molecules. Finally, the photocatalytic and photoluminescent properties of brookite TiO2 were studied.


2019 ◽  
Vol 3 (1) ◽  
pp. 36 ◽  
Author(s):  
Igor Zhuravlev

The aim of the work was the development of cheap and effective adsorbents based on titanium silicates deposited on the products of thermochemical processing of rice husk to extract cesium and strontium radioisotopes from aqueous media. Synthesis of adsorbents was carried out using the cheapest and widely used titanium water-soluble reagent, titanium sulfate (an intermediate product of white rutile pigment production), as feedstock. After treatment with titanium sulfate and neutralization, hydrothermal treatment was carried out in various ways. The traditional method of processing in an autoclave was used, as well as the blowing at different temperatures by steam. The distribution coefficients and the adsorption capacity for cesium and strontium ions on these sorbents were studied. Along with the chemical composition of adsorbents obtained by those ways, the type and the temperature of hydrothermal treatment also affected the adsorption properties. It was found that the adsorbent obtained by hydrothermal treatment in an autoclave has the highest degree of cesium ions extraction (Kd = 27,500). The highest degree of strontium ions extraction (Kd = 2,095,000) has an adsorbent obtained by hydrothermal treatment with water vapor blowing.


2018 ◽  
Vol 30 (4) ◽  
pp. 801-809
Author(s):  
Igor V. Pekov ◽  
Oleg I. Siidra ◽  
Nikita V. Chukanov ◽  
Vasiliy O. Yapaskurt ◽  
Dmitry I. Belakovskiy ◽  
...  
Keyword(s):  

2017 ◽  
Vol 7 (1) ◽  
pp. 243-250 ◽  
Author(s):  
Toru Murayama ◽  
Kiyotaka Nakajima ◽  
Jun Hirata ◽  
Kaori Omata ◽  
Emiel J. M. Hensen ◽  
...  

A layered-type W–Ti–O mixed oxide was synthesized by hydrothermal synthesis from an aqueous solution of ammonium metatungstate and titanium sulfate.


Sign in / Sign up

Export Citation Format

Share Document