Initial Corrosion Study of Magnesium Alloys in Simulated Body Fluid By SECM

2014 ◽  
Vol 891-892 ◽  
pp. 267-272 ◽  
Author(s):  
Sajjad Jafari ◽  
R.K. Singh Raman

Use of Magnesium alloys as body implants are breaking into a new paradigm of biomedical engineering as they are biocompatible, biodegradable and have mechanical properties close to that of bone. Even though corrosion fatigue (CF) and stress corrosion cracking (SCC) failures are among the most common concerns for metallic implants, CF behaviour of magnesium alloys in physiological environments has received little attention. This article reports the CF results of a common cast magnesium alloy (AZ91D) in modified simulated body fluid (m-SBF). Results showed that there was a remarkable difference in fatigue strength of Mg alloys when tests were performed in m-SBF.


2019 ◽  
Vol 45 (14) ◽  
pp. 16893-16903 ◽  
Author(s):  
Pooja Rai ◽  
Amrendra Rai ◽  
Vijay Kumar ◽  
R.K. Chaturvedi ◽  
Vinay Kumar Singh

2012 ◽  
Vol 217-219 ◽  
pp. 1053-1056
Author(s):  
Xiang Rong Zhu ◽  
Zhong Ping Xu ◽  
Nai Ci Bing ◽  
Qiu Rong Chen

TiO2 films were deposited on AZ31 magnesium alloy substrates by r.f. magnetron sputtering. The corrosion behaviors in simulated body fluid (SBF) of the film samples were investigated and compared to the bare AZ31 magnesium alloy. After 3 days’ corrosion in SBF, only part of the TiO2 layer suffered from corrosion and the substrate was prevented from corrosion. In contrast, the bare magnesium alloy suffered from severe corrosion. After 10 days’ corrosion, the TiO2 layer was penetrated and the substrates still did not suffer from corrosion. After 15 days’ corrosion, besides TiO2 layer, the substrate suffered from corrosion to some degree. The depth of the corrosion layer is about 6 m, which is far lower than that of bare magnesium alloy, 40 m. The results show that TiO2 films effectively improve the corrosion properties of magnesium alloys.


2017 ◽  
Vol 4 (3) ◽  
pp. 034006 ◽  
Author(s):  
Dhyah Annur ◽  
Aprilia Erryani ◽  
Franciska P Lestari ◽  
I Nyoman Putrayasa ◽  
P A Gede ◽  
...  

2007 ◽  
Vol 29-30 ◽  
pp. 95-98 ◽  
Author(s):  
Guang Ling Song

Magnesium alloys are potential biodegradable implant materials. However, magnesium alloys normally corrode rapidly in the in-vivo fluid, resulting in subcutaneous gas bubbles and alkalisation of the in-vivo solution. The paper presents a new approach to control the degradation rate of magnesium in a simulated body fluid (SBF) through employing a recently developed anodising technique. It was found that the ceramic like anodised coating formed on the surface of magnesium can effectively slow down the biodegradation process and hence result in slow hydrogen evolution and solution alkalisation processes. The results imply that an anodised magnesium alloy may be successfully used as a biodegradable implant material.


Sign in / Sign up

Export Citation Format

Share Document