Control of Degradation of Biocompatible Magnesium in a Pseudo-Physiological Environment by a Ceramic Like Anodized Coating

2007 ◽  
Vol 29-30 ◽  
pp. 95-98 ◽  
Author(s):  
Guang Ling Song

Magnesium alloys are potential biodegradable implant materials. However, magnesium alloys normally corrode rapidly in the in-vivo fluid, resulting in subcutaneous gas bubbles and alkalisation of the in-vivo solution. The paper presents a new approach to control the degradation rate of magnesium in a simulated body fluid (SBF) through employing a recently developed anodising technique. It was found that the ceramic like anodised coating formed on the surface of magnesium can effectively slow down the biodegradation process and hence result in slow hydrogen evolution and solution alkalisation processes. The results imply that an anodised magnesium alloy may be successfully used as a biodegradable implant material.

2022 ◽  
Vol 12 (2) ◽  
pp. 411-416
Author(s):  
Liang Tang ◽  
Si-Yu Zhao ◽  
Ya-Dong Yang ◽  
Geng Yang ◽  
Wen-Yuan Zhang ◽  
...  

To investigate the degradation, mechanical properties, and histocompatibility of weft-knitted silk mesh-like grafts, we carried out the In Vitro and In Vivo silk grafts degradation assay. The In Vitro degradation experiment was performed by immersing the silk grafts in simulated body fluid for 1 year, and the results showed that the degradation rate of the silk mesh-like grafts was very slow, and there were few changes in the mechanical properties and quality of the silk mesh-like graft. In Vivo degradation assay was taken by implantation of the silk mesh-like grafts into the subcutaneous muscles of rabbits. At 3, 6, and 12 months postoperation, the rate of mass loss was 19.36%, 31.84%, and 58.77%, respectively, and the maximum load was 63.85%, 34.63%, and 10.76%, respectively of that prior to degradation. The results showed that the degradation rate of the silk graft and the loss of mechanical properties In Vivo were faster than the results obtained in the In Vitro experiments. In addition, there were no significant differences in secretion of serum IL-6 and TNF-α between the experimental and normal rabbits (P >0.05), suggesting no obvious inflammatory reaction. The findings suggest that the weft-knitted silk mesh-like grafts have good mechanical properties, histocompatibility, and In Vivo degradation rate, and therefore represent a candidate material for artificial ligament


2014 ◽  
Vol 891-892 ◽  
pp. 267-272 ◽  
Author(s):  
Sajjad Jafari ◽  
R.K. Singh Raman

Use of Magnesium alloys as body implants are breaking into a new paradigm of biomedical engineering as they are biocompatible, biodegradable and have mechanical properties close to that of bone. Even though corrosion fatigue (CF) and stress corrosion cracking (SCC) failures are among the most common concerns for metallic implants, CF behaviour of magnesium alloys in physiological environments has received little attention. This article reports the CF results of a common cast magnesium alloy (AZ91D) in modified simulated body fluid (m-SBF). Results showed that there was a remarkable difference in fatigue strength of Mg alloys when tests were performed in m-SBF.


2012 ◽  
Vol 217-219 ◽  
pp. 1053-1056
Author(s):  
Xiang Rong Zhu ◽  
Zhong Ping Xu ◽  
Nai Ci Bing ◽  
Qiu Rong Chen

TiO2 films were deposited on AZ31 magnesium alloy substrates by r.f. magnetron sputtering. The corrosion behaviors in simulated body fluid (SBF) of the film samples were investigated and compared to the bare AZ31 magnesium alloy. After 3 days’ corrosion in SBF, only part of the TiO2 layer suffered from corrosion and the substrate was prevented from corrosion. In contrast, the bare magnesium alloy suffered from severe corrosion. After 10 days’ corrosion, the TiO2 layer was penetrated and the substrates still did not suffer from corrosion. After 15 days’ corrosion, besides TiO2 layer, the substrate suffered from corrosion to some degree. The depth of the corrosion layer is about 6 m, which is far lower than that of bare magnesium alloy, 40 m. The results show that TiO2 films effectively improve the corrosion properties of magnesium alloys.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5550
Author(s):  
Junxiu Chen ◽  
Yang Yang ◽  
Iniobong P. Etim ◽  
Lili Tan ◽  
Ke Yang ◽  
...  

The wide application of magnesium alloys as biodegradable implant materials is limited because of their fast degradation rate. Hydroxyapatite (HA) coating can reduce the degradation rate of Mg alloys and improve the biological activity of Mg alloys, and has the ability of bone induction and bone conduction. The preparation of HA coating on the surface of degradable Mg alloys can improve the existing problems, to a certain extent. This paper reviewed different preparation methods of HA coatings on biodegradable Mg alloys, and their effects on magnesium alloys’ degradation, biocompatibility, and osteogenic properties. However, no coating prepared can meet the above requirements. There was a lack of systematic research on the degradation of coating samples in vivo, and the osteogenic performance. Therefore, future research can focus on combining existing coating preparation technology and complementary advantages to develop new coating preparation techniques, to obtain more balanced coatings. Second, further study on the metabolic mechanism of HA-coated Mg alloys in vivo can help to predict its degradation behavior, and finally achieve controllable degradation, and further promote the study of the osteogenic effect of HA-coated Mg alloys in vivo.


2021 ◽  
Vol 259 ◽  
pp. 124039
Author(s):  
Tao Zhu ◽  
Yi Yu ◽  
Jie Yang ◽  
Yongshui Shen ◽  
Liuyong He ◽  
...  

2019 ◽  
Vol 26 (3) ◽  
pp. 395-407 ◽  
Author(s):  
Asma Ghanbari ◽  
Hassan Jafari ◽  
Faramarz Ashenai Ghasemi

Sign in / Sign up

Export Citation Format

Share Document