biodegradable magnesium
Recently Published Documents


TOTAL DOCUMENTS

373
(FIVE YEARS 135)

H-INDEX

44
(FIVE YEARS 11)

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 63
Author(s):  
Mohammad Zolfaghari Baghbaderani ◽  
Somayeh Abazari ◽  
Hamid Reza Bakhsheshi-Rad ◽  
Ahmad Fauzi Ismail ◽  
Safian Sharif ◽  
...  

The aim of this work was to establish and characterize chitosan/graphene oxide- magnesium oxide (CS/GO-MgO) nanocomposite coatings on biodegradable magnesium-zinc-cerium (Mg-Zn-Ce) alloy. In comparison to that of pure CS coatings, all composite coatings encapsulating GO-MgO had better adhesion strength to the Mg-Zn-Ce alloy substrate. The result depicted that the co-encapsulation of GO-MgO into the CS layer leads to diminish of contact angle value and hence escalates the hydrophilic characteristic of coated Mg alloy. The electrochemical test demonstrated that the CS/GO-MgO coatings significantly increased the corrosion resistance because of the synergistic effect of the GO and MgO inside the CS coating. The composite coating escalated cell viability and cell differentiation, according to cytocompatibility tests due to the presence of GO and MgO within the CS. The inclusion of GO-MgO in CS film, on the other hand, accelerates the formation of hydroxyapatite (HA) during 14 days immersion in SBF. Immersion results, including weight loss and hydrogen evolution tests, presented that CS/GO-MgO coating enables a considerably reduced degradation rate of Mg-Zn-Ce alloy when compared to the bare alloy. In terms of antibacterial-inhibition properties, the GO-MgO/CS coatings on Mg substrates showed antibacterial activity against Escherichia coli (E. coli), with a large inhibition area around the specimens, particularly for the coating containing a higher concentration of GO-MgO. Bacterial growth was not inhibited by the bare Mg alloy samples. The CS/GO-MgO composite coating is regarded as a great film to enhance the corrosion resistance, bioactivity, and antibacterial performance of Mg alloy implants.


Life Research ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 7
Author(s):  
ZhaoYang Ran ◽  
WuFei Dai ◽  
Kai Xie ◽  
YongQiang Hao

Author(s):  
Jonathan Espiritu ◽  
Mostafa Berangi ◽  
Christina Yiannakou ◽  
Eduarda Silva ◽  
Roberto Francischello ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Hongzhou Peng ◽  
Wei Wang ◽  
Haomiao Jiang ◽  
Rui Zan ◽  
Yu Sun ◽  
...  

With recent progress in clinical trials and scale-up applications of biodegradable magnesium-based implants, the scenarios of transplanting biodegradable Mg with other non-degradable metals may occur inevitably. Galvanic corrosion appears between two metallic implants with different electrochemical potentials and leads to accelerated degradation. However, a quantitative measurement on the galvanic corrosion of Mg in contact with other metallic implants has not been conducted. Here we study the corrosion behaviors and mechanical attenuation of high purity magnesium (Mg)in contact with stainless steel (316L), pure titanium (TA2), and magnesium alloy (AZ91) respectively to form different galvanic couples in simulated body fluids. The results show that all of these three heterogeneous metal pairs accelerate the degradation of high purity Mg to different degrees, yielding declined tensile strength and mechanical failure after 4 days of immersion. Our observations alert the potential risk of co-implanting different metallic devices in clinical trials.


Author(s):  
Željka Perić Kačarević ◽  
Patrick Rider ◽  
Akiva Elad ◽  
Drazen Tadic ◽  
Daniel Rothamel ◽  
...  

Author(s):  
Ding Li ◽  
Dechuang Zhang ◽  
Qi Yuan ◽  
Lihong Liu ◽  
Hui Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document