The Effect of a Turbulence Grid on the Temperature Distribution in an Air-Cooled Proton Exchange Membrane Fuel Cell – a Modelling Study

Author(s):  
Saher Al Shakhshir ◽  
Xin Gao ◽  
Torsten Berning

Abstract In a previous numerical study on heat and mass transfer in air-cooled proton exchange membrane fuel cells, it was found that the performance is limited by heat transfer to the cathode side air stream that serves as a coolant, and it was proposed to place a turbulence grid before the cathode inlet in order to induce a mixing effect to the air and thereby improve the heat transfer and ultimately increase the limiting current and maximum power density. The current work summarizes experiments with different turbulence grids which varied in terms of their pore size, grid thickness, rib width, angle of the pores, and the distance between the grid and the cathode inlet. For all grids tested in this study, the limiting current density of a Ballard Mark 1020 ACS stack was increased by 20%. The single most important parameter was the distance between the turbulence grid and the cathode inlet, and it should be within 5 mm. For the best grid tested, the fuel cell stack voltage and thus the efficiency were increased by up to 20%. The power density was increased by more than 30% and further improvements are believed to be possible.


Author(s):  
Sangseok Yu ◽  
Dohoy Jung ◽  
Dennis N. Assanis

A thermal model of the Proton Exchange Membrane Fuel Cell (PEMFC) was developed to investigate the performance of a large active area fuel cell with the water cooling thermal management system. The model includes three sub-models: water transport model, electrochemical reaction model and heat transfer model. The water transport model calculates water distribution and the electric resistance of the membrane electrolyte. The electrochemical reaction model for the agglomerate structure cathode catalyst layer predicts the cathode overpotentials including mass transport limitation effect at high current density region. Two-dimensional heat transfer model incorporated with coolant and gas channels predicts the temperature distribution within the fuel cell. By integrating those sub-models, local electric resistance and overpotentials depending on the water and temperature distribution can be predicted. The model was calibrated with published experimental data and sensitivity studies were performed. The effects of the inlet gas temperature and humidity on the fuel cell performance were explored. In addition, the effect of the temperature distribution, and accordingly the electric resistance distribution within the fuel cell depending on the coolant temperature and flowrate was investigated. The results shows that the change in the local electric resistance due to temperature distribution eventually causes fuel cell power decrease and it is also concluded that the coolant temperature and flowrate should be controlled properly depending on the operating conditions in order to minimize the temperature distribution while maximizing power output of the fuel cell.


2009 ◽  
Vol 12 (9) ◽  
pp. B126 ◽  
Author(s):  
Sang-Kun Lee ◽  
Kohei Ito ◽  
Toshihiro Ohshima ◽  
Shiun Noda ◽  
Kazunari Sasaki

2016 ◽  
Vol 78 ◽  
pp. 01116
Author(s):  
Izzuddin Zaman ◽  
Bukhari Manshoor ◽  
Amir Khalid ◽  
Laily Azwati Mohamad Sterand ◽  
Shiau Wei Chan

2013 ◽  
Vol 227 ◽  
pp. 72-79 ◽  
Author(s):  
Houchang Pei ◽  
Zhichun Liu ◽  
Haining Zhang ◽  
Yi Yu ◽  
Zhengkai Tu ◽  
...  

2008 ◽  
Vol 5 (4) ◽  
Author(s):  
Dohoy Jung ◽  
Sangseok Yu ◽  
Dennis N. Assanis

A numerical model of a proton exchange membrane fuel cell has been developed to predict the performance of a large active area fuel cell with the water cooling thermal management system. The model includes three submodels for water transport, electrochemical reaction, and heat transfer. By integrating those submodels, local electric resistance and overpotential depending on the water and temperature distribution can be predicted. In this study the effects of the inlet gas temperature and humidity on the fuel cell performance are explored, and the effect of the temperature distribution at different coolant temperatures is investigated. The results show that the changes in local electric resistance due to temperature distribution cause fuel cell power decrease. Therefore, the coolant temperature and flow rate should be controlled properly depending on the operating conditions in order to minimize the temperature distribution while maximizing the power output of the fuel cell.


Sign in / Sign up

Export Citation Format

Share Document