Improvement of High Voltage Cycling Performance of Lithium-Ion Cells By Employing a Functional Additive

2020 ◽  
Vol MA2020-02 (4) ◽  
pp. 700-700
Author(s):  
Seung-Bo Hong ◽  
Dong-Kwan Han ◽  
Dong-Won Kim
2019 ◽  
Vol 166 (13) ◽  
pp. A2910-A2920 ◽  
Author(s):  
Jan-Patrick Schmiegel ◽  
Xin Qi ◽  
Sven Klein ◽  
Volker Winkler ◽  
Marco Evertz ◽  
...  

2020 ◽  
Vol 24 (11-12) ◽  
pp. 3145-3156
Author(s):  
Natascha von Aspern ◽  
Christian Wölke ◽  
Markus Börner ◽  
Martin Winter ◽  
Isidora Cekic-Laskovic

Abstract Two functional high-voltage additives, namely 2-(2,2,3,3,3-pentafluoropropoxy)-1,3,2-dioxaphospholane (PFPOEPi) and 1-methyl-3,5-bis(trifluoromethyl)-1H-pyrazole (MBTFMP) were combined as functional additive mixture in organic carbonate–based electrolyte formulation for high-voltage lithium battery application. Their impact on the overall performance in NMC111 cathode-based cells was compared with the single-additive–containing electrolyte counterpart. The obtained results point to similar cycling performance of the additive mixture containing electrolyte formulation compared with the MBTFMP-containing cells, whereas the single PFPOEPi-containing cells displayed the best cycling performance in NMC111||graphite cells. With regard to the cathode electrolyte interphase (CEI), characterized and analyzed by means of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), both the MBTFMP and the PFPOEPi functional additives decompose on the NMC111 surface in single-additive–containing electrolyte formulations. However, the thickness of the CEI formed in the additive mixture–containing electrolyte formulation is determined by the MBTFMP additive, whereas the PFPOEPi additive impacts a change in the composition of the CEI. Furthermore, the MBTFMP additive decomposes prior to the PFPOEPi and, therefore, dominates the cycling performance of NMC111||graphite cells containing functional additive mixture–based electrolyte. This systematic approach allows us to understand the synergistic impact of each functional additive in an electrolyte formulation containing an additive mixture and helps to identify the right additive combination for advanced electrolyte formulation as well as to elucidate whether the single-additive or the additive mixture approach is more effective for the development of advanced functional electrolytes for lithium-based cell chemistries. Graphical abstract


2009 ◽  
Vol 11 (10) ◽  
pp. 1900-1903 ◽  
Author(s):  
Ki-Soo Lee ◽  
Yang-Kook Sun ◽  
Jaegeun Noh ◽  
Kwang Soup Song ◽  
Dong-Won Kim

2021 ◽  
pp. 2003756
Author(s):  
Sven Klein ◽  
Patrick Harte ◽  
Jonas Henschel ◽  
Peer Bärmann ◽  
Kristina Borzutzki ◽  
...  

2019 ◽  
Vol 237 ◽  
pp. 224-227 ◽  
Author(s):  
S. Karthickprabhu ◽  
Dhanasekaran Vikraman ◽  
A. Kathalingam ◽  
K. Prasanna ◽  
Hyun-Seok Kim ◽  
...  

Liquids ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 60-74
Author(s):  
Xin Ma ◽  
Peng Zhang ◽  
Huajun Zhao ◽  
Qingrong Wang ◽  
Guangzhao Zhang ◽  
...  

Widening the working voltage of lithium-ion batteries is considered as an effective strategy to improve their energy density. However, the decomposition of conventional aprotic electrolytes at high voltage greatly impedes the success until the presence of high concentration electrolytes (HCEs) and the resultant localized HCEs (LHCEs). The unique solvated structure of HCEs/LHCEs endows the involved solvent with enhanced endurance toward high voltage while the LHCEs can simultaneously possess the decent viscosity for sufficient wettability to porous electrodes and separator. Nowadays, most LHCEs use LiFSI/LiTFSI as the salts and β-hydrofluoroethers as the counter solvents due to their good compatibility, yet the LHCE formula of cheap LiPF6 and high antioxidant α-hydrofluoroethers is seldom investigated. Here, we report a unique formula with 3 mol L−1 LiPF6 in mixed carbonate solvents and a counter solvent α-substituted fluorine compound (1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropylether). Compared to a conventional electrolyte, this formula enables dramatic improvement in the cycling performance of LiCoO2//graphite cells from approximately 150 cycles to 1000 cycles within the range of 2.9 to 4.5 V at 0.5 C. This work provides a new choice and scope to design functional LHCEs for high voltage systems.


2019 ◽  
Vol 327 ◽  
pp. 135018 ◽  
Author(s):  
Peipei Pang ◽  
Zheng Wang ◽  
Xinxin Tan ◽  
Yaoming Deng ◽  
Junmin Nan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document